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Abstract

Healthy adults show better memory for low-arousing positive versus negative stimuli, but 

depression compromises this positive memory advantage. Existing studies are limited by small 

samples or analyses that provide limited insight into underlying mechanisms. Our study addresses 

these concerns by using a multi-staged analysis, including diffusion modeling, to identify 

precise psychological processes underlying the positive memory advantage and its disruption by 

depression in a large sample. A total of 1,358 participants completed the BDI-II (Beck, Steer, 

Ball, & Ranieri, 1996) and an emotional memory task. At encoding, participants judged whether 

positive and negative words were positive or self-descriptive. After a free recall test, participants 

viewed an equal mix of studied and unstudied words, and judged whether each one was “old” or 

“new”; if judged “old”, they indicated the study source (“Positive?” or “Describes?” question). We 

replicate the positive memory advantage and its decrease in depression in recall, recognition, and 

source accuracy. The Hierarchical Drift Diffusion Model (HDDM; Wiecki et al, 2013) revealed 

that higher BDI scores are associated with more efficient evidence accumulation for negative 

words in the recognition and source memory tasks. By contrast, evidence accumulation for 

positive words is unaffected by BDI during the recognition task, but becomes less efficient with 

increased BDI during the source memory task. In conclusion, in a well-controlled design with a 

large sample, we find that depression reduces the positive memory advantage. HDDM analyses 

suggest that this reflects differential effects of depression on the speed of evidence accumulation 

during the retrieval of positive vs. negative memories.
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Major Depressive Disorder (MDD) is both a serious and common mental illness, with 7% 

of US adults reporting at least one episode in the past year (NIMH, 2017). In addition 

to its hallmark affective and physiological symptoms, MDD has long been associated 

with cognitive deficits such as impaired executive functioning (Snyder, 2013) and reduced 

sensitivity to rewards (Meehl, 1975; Pizzagalli, 2014; Proudfit, 2015; Treadway & Zald, 

2011). Further, depression is associated with episodic memory deficits (MacQueen, Galway, 

Hay, Young, & Joffe, 2002; Rock, Roiser, Riedel, & Blackwell, 2014; Zakzanis, Leach, & 

Kaplan, 1998), with striking effects on memory for emotional material: Whereas healthy 

adults tend to show improved memory for low-arousing positive vs. negative stimuli, this 

advantage is reduced or even reversed in depression (Burt, Zembar, & Niederehe, 1995; 

Matt, Vazquez, & Campbell, 1992). This effect suggests that, in daily life, depressed 

adults likely retrieve proportionately fewer positive memories than do their non-depressed 

peers. The downstream consequences are substantial; for instance, broad memory deficits 

predict a longer course of illness (Hallford, Rusanov, Yeow, & Barry, 2021; Sumner, 

Griffith, & Mineka, 2010), and poorer specificity when recalling positive memories has 

been associated with increased vulnerability to depression among adolescents (Askelund, 

Schweizer, Goodyer, & van Harmelen, 2019). Encouragingly, the central role of emotional 

memory in depression is increasingly recognized, and therapies that aim to correct negative 

memory biases have yielded promising results in depressed patients (see Dalgleish & 

Werner-Seidler, 2014 for review).

Therapeutic interventions would likely be more effective if more were known about the 

upstream mechanisms that drive these memory deficits in the first place. Neuroimaging 

research has linked poor memory for positive material and enhanced memory for negative 

material to abnormal encoding responses in the dopaminergic midbrain (Dillon, Dobbins, & 

Pizzagalli, 2014) and amygdala (Hamilton & Gotlib, 2008), respectively, but these studies 

used relatively small samples and the specific cognitive processes affected by these neural 

abnormalities remain underspecified. In this context, computational models such as the 

Drift Diffusion Model (DDM; Ratcliff & McKoon, 2008) can provide insight into the 

specific psychological mechanisms that support the positive memory advantage in healthy 

adults, and that are disrupted by depression. The DDM, depicted in Figure 1, assumes 

that simple binary decisions (such as judging whether or not a stimulus has been seen 

before) are the result of evidence accumulating over time from an initial starting point 

towards one of two boundaries that represent possible responses (such as “yes” or “no”). 

The starting point z ranges from 0–1, with values below and above 0.5 reflecting initial 

“starting” biases towards the lower (“no” in Figure 1) and upper (“yes” in Figure 1) 

response boundaries, respectively. The distance a between the two boundaries measures 

the amount of evidence needed to respond. Higher values of a correspond to greater distance 

between the boundaries and indicate greater response caution. Though evidence is assumed 

to accumulate noisily on a trial-by-trial basis (e.g., the orange line in Figure 1), the average 

rate of accumulation across trials (the “drift rate”, e.g., the solid black line in Figure 1) is 
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represented by the parameter v, with negative and positive values indicating that evidence 

generally accumulates towards the lower (“no” in Figure 1) and upper (“yes” in Figure 1) 

response boundaries, respectively. Regardless of sign, higher magnitude drift rates reflect 

more efficient evidence accumulation. Lastly, the time spent for all “non-decision” processes 

(e.g., encoding and motor response) is represented by the parameter t0. By modeling the 

decision process dynamically, the DDM jointly estimates both choice proportions (i.e., the 

proportion of trials in which the upper vs. lower boundary was reached) and response 

times (i.e., the time taken to reach a boundary), thus providing a well-constrained model of 

decision-making as it unfolds over time.

The power of the DDM in uncovering subtle processing differences was demonstrated by 

White et al (2009) in a study of emotional memory in dysphoric college students. Though 

no significant behavioral effects of dysphoria or stimulus valence were found for memory 

accuracy or response times (RTs), the authors did find effects for drift rate. Specifically, 

whereas non-dysphoric students demonstrated faster drift rates for positive versus negative 

words, no such difference was found among dysphoric students, suggesting that the positive 

memory deficit in depression reflected slow evidence accumulation during the retrieval 

of positive versus negative memories. This demonstrates that computational models can 

uncover processing differences that may be difficult to detect with standard behavioral 

measures such as percent correct or mean RT, as these are the net outcome of multiple 

component processes that the model can disentangle.

The findings of White et al (2009) thus demonstrate the utility of the DDM in clinical 

research, but several questions remain regarding the nature of the positive memory deficit 

in depression. First, it remains unclear whether the altered emotional memory bias seen 

in depressed adults mainly reflects altered processing of positive stimuli, negative stimuli, 

or both. Whereas some studies point to poorer memory for positive stimuli in depression 

(Auerbach, Stanton, Proudfit, & Pizzagalli, 2015; Burt et al., 1995), others suggest improved 

memory for negative stimuli (e.g., Hamilton & Gotlib, 2008), and still others find effects 

in both directions (Dillon et al., 2014; Dunbar & Lishman, 1984; Rouhani & Niv, 2019). 

Second, many studies of memory in depression rely on self-referential encoding tasks 

(Dainer-Best, Lee, Shumake, Yeager, & Beevers, 2018), typically finding that, relative 

to controls, depressed adults endorse more negative but fewer positive words as self-

descriptive, and then go on to remember more negative but fewer positive words. This 

approach is robust but confounds valence and self-referential processing: One cannot tell if 

better memory for negative words in depressed individuals is due to exaggerated emotional 

responses or instead simply reflects greater elaboration at encoding, since judging material 

in relation to the self is a classic “deep processing” manipulation that reliably enhances 

memory (Rogers, Kuiper, & Kirker, 1977). To adjudicate between these possibilities, the 

self-referential task could be paired with a second encoding task that uses similarly valenced 

stimuli but that does not require self-referential processing. Third, many prior studies in this 

area, including our own, used relatively small samples and thus had limited power.

The goal of the present work is to address these limitations by applying the DDM to a 

large-scale online study of emotional memory in order to isolate specific psychological 

mechanisms that drive the positive memory advantage and its reduction in depression. 
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Specifically, 1,358 participants studied a list of normatively positive and negative words 

by providing either a self-reference (“Does this word describe you?”) or valence (“Is this 

word positive?”) judgment for each word. Consistent with prior work, we expect higher 

BDI scores to be associated with a tendency to endorse more negative vs. positive in the 

self-reference task. Due to the robustness of the positive memory deficit, we predict that 

increased BDI scores will be associated with worse memory for positive vs. negative words 

from both tasks, consistent with a task-general response to emotional material. Moreover, 

given the diversity of previous findings (e.g., Dillon et al., 2014; Dunbar & Lishman, 1984; 

Hamilton & Gotlib, 2008; Rouhani & Niv, 2019), we predict that such effects will most 

likely be driven by both poorer memory for positive material and enhanced memory for 

negative material, but potentially via distinct mechanisms. In an effort to dissociate these 

effects, we probed memory in three ways. We first examined free recall. We expected strong 

effects of depression on recall based on prior work (Matt et al., 1992), but one concern is 

that recall is particularly effortful and dependent on executive functioning, which is also 

affected by depression (Snyder, 2013). To address this potential confound, and following 

White et al (2009), we next tested recognition memory to reduce demands on executive 

functioning and collect data better suited for modeling. Lastly, we tested source memory 

by asking participants to identify the encoding task for words reported as “old”. Probing 

source memory is useful because the task offers better experimental control than free recall 

but may be more sensitive to the negative effect of depression on hippocampal-dependent 

processes than recognition memory (MacQueen et al., 2003, 2002; Ramponi, Barnard, & 

Nimmo-Smith, 2004). Here, we make the additional prediction that the well-established 

tendency of depressed adults to endorse more negative than positive words as self-referential 

may carry over into source judgments. Specifically, as BDI increases, participants may be 

more likely to attribute negative words to the self-reference task.

In the modeling stage, recognition and source accuracy data were fit with the Bayesian 

Hierarchical Drift Diffusion Model (HDDM; Wiecki et al., 2013). Here, we expect the 

results of White et al (2009) to replicate for recognition and extend to source memory, 

with higher BDI scores leading to less efficient evidence accumulation during the retrieval 

of positive memories and more efficient evidence accumulation during the retrieval of 

negative memories. Lastly, because it is a more widely-used framework, we further fit the 

data to an equal variance Signal Detection model (SDT; Macmillan & Creelman, 2005) 

for generalizability. Because drift rates are traditionally associated with memory strength 

(Ratcliff & McKoon, 2008), we expect the SDT results for both recognition and source 

accuracy to demonstrate decreased discriminability for positive vs. negative memories with 

increased BDI scores.

Method

Participants

The study was reviewed by the Harvard University Committee on the Use of Human 

Subjects, protocol 15795 “Web-based studies of individual differences in cognition”. A total 

of 1,945 participants were recruited through the online platform TestMyBrain.org (Germine 

et al., 2012). Prior to analyses, we excluded 450 participants for being younger than 18 
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years old and 115 for not completing all self-report measures. We removed an additional 

22 subjects for negative recognition d’ scores, which reflect below chance performance and 

strongly suggest a task misunderstanding. We did not, however, remove subjects for negative 

source d’ scores, which could easily emerge due to low trial counts in participants who 

performed poorly at recognition. The final sample of 1,358 participants was diverse: 56% 

were female and 54% were of European descent, with a mean (SD) age of 32.14 (13.6) 

years. Participants were not compensated but received feedback on their performance upon 

completion of the study.

Self-Report Measures

Participants reported their age, gender, and ethnicity and completed the Beck Depression 

Inventory II (BDI; Beck, Steer, Ball, & Ranieri, 1996), a 21-item scale that assesses 

depressive symptoms for the prior two weeks. Age and sex data were collected prior to 

the task; all other measures were completed after.

Memory Task

Stimuli—Participants were randomly assigned to one of two 50-item word lists at encoding, 

A or B, each drawn from lists of 100 negative and 100 positive English words. Normative 

valence (1 = negative, 9 = positive) and arousal (1 = calm, 9 = excited) ratings (Warriner, 

Kuperman, & Brysbaert, 2013) were available for each word, along with frequency 

(Brysbaert & New, 2009) and concreteness (Brysbaert, Warriner, & Kuperman, 2014) data. 

Participants viewed all words from both lists at recognition. Within each list, the negative 

and positive words differed significantly on valence (A: t = −41.49, p < .001; B: t = −42.23, 

p < 0.001) but not on other properties (arousal, number of letters, frequency, concreteness, 

imageability; all ps < .05). Given its particular relevance to studies of emotional memory, 

we note that arousal ratings were consistently moderate across lists and valence conditions 

(Apos: median=4.67, min=3.14, max=6.65; Aneg: median=4.69, min=1.67, max=6.60; Bpos: 

median=4.57, min=2.38, max=6.65; Bneg: median=4.72, min=2.70, max=6.60).

Both lists were submitted to Latent Semantic Analysis (LSA; Landauer, 2006; see also 

Dillon, Cooper, Grent-’t-Jong, Woldorff, & LaBar, 2006). LSA is a machine learning tool 

that analyzes the semantic similarity of text; it indicated that iter-item associativity is equal 

across the 100 negative (0.11±0.10) and 100 positive (0.11±0.10) words, p = 0.13. This 

is important, because in many studies stimulus differences in valence are confounded with 

differences in semantic cohesion, which has independent effects on memory (Talmi & 

Moscovitch, 2004). Lastly, there were no differences on any property (all ps < .05) for 

negative or positive words assigned to list A vs. B.

Procedure—The memory task included encoding, recall, and recognition stages (Figure 

2). On each of 50 encoding trials (Figure 2a), participants viewed a normatively positive 

or negative word and made one of two yes/no judgments: “Describes you?” (self-reference 

task) or “Positive word?” (valence task). All participants completed an equal number of 

self-reference and valence tasks, which were presented in a fixed random order. Words 

remained on screen until the participant responded or 10 seconds had elapsed. If no response 
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was made after 10 seconds, participants saw a screen that read “Time’s up! Next time try to 

respond more quickly.”

After encoding, participants completed free recall and recognition tests. In the free recall 

test (Figure 2b), participants typed as many words from encoding as they could remember—

there was no time limit, and participants could stop whenever they wished. The recognition 

test (Figure 2c) included all 50 “old” words from encoding plus 50 “new” positive and 

negative words drawn from the list that was not shown at encoding. Old and new words 

were presented in a fixed random order. The task was to indicate whether each word was 

from encoding (i.e., was old) or not (i.e., was new). If participants indicated that a word was 

new, they proceeded to the next trial. If they judged a word old, they were asked to report 

whether it was encoded in the self-reference or valence task. This final question tests source 

memory, as participants had to retrieve the context—the encoding task—in which each word 

was previously encountered.

Analyses

Behavior—Encoding behavior is measured by the proportion of “yes” responses. 

Recall performance is measured by the number of correctly recalled words. Recognition 

performance is measured by the proportion of “old” responses to words studied in each 

encoding task. Lastly, source accuracy is measured by the proportion of “self-reference” 

source attributions for correctly recognized words. Because the HDDM cannot handle 

especially long RTs, trials with RT greater than 3 SD above the subject’s mean were 

excluded from all recognition and source analyses. This resulted in the exclusion of 1.6% of 

recognition trials and 2.0% of source trials.

HDDM—Diffusion modeling of recognition and source data was conducted with the Python 

package hddm (Wiecki et al., 2013). The HDDM is a Bayesian hierarchical model in which 

subject-level parameters are drawn from group-level distributions. We assumed uninformed 

priors in each analysis. In both the recognition and source models, threshold a, starting 

point bias z, and non-decision time t0 were all fixed within subjects1. In the recognition 

model, drift rate v was allowed to vary by valence and study status. Positive and negative 

drift rates indicated evidence accumulation towards “old” and “new” responses, respectively. 

In the source accuracy model, drift rate was allowed to vary by valence and the source 

(encoding) task. Here, positive and negative values indicated evidence accumulation towards 

“self-reference” and “valence” responses, respectively. Though the recognition and source 

memory behavioral analyses focus on accuracy for studied items, both studied and unstudied 

items were included in model fits.

Each model run included 2000 burn-in steps and 8000 saved steps. All models converged, 

and all were validated with posterior predictive checks of choice and RTs. Inferences are 

made by calculating the 95% highest density interval (HDI) around the mean of the posterior 

estimate of a given parameter. We consider a meaningful effect to be indicated by an 

1Alternative models in which (1) threshold and (2) threshold and starting point bias were allowed to vary by valence were also tried, 
however these models yielded worse fits to the data. Given this, and given that it is not standard practice to allow these parameters to 
vary within-subjects, we proceed with the simpler model.
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HDI that excludes zero or, for between-group comparisons, a pair of intervals that do not 

overlap. We caution, however, that this is merely a guide to ease exposition; with Bayesian 

estimation, intervals that do not meet this threshold are not necessarily qualitatively distinct 

from those that do (see Kruschke, 2014).

SDT—To facilitate comparisons with broader research, we also describe the recognition 

and source accuracy data with parameters from an equal variance signal detection model 

(Macmillan & Creelman, 2005). Prior to analyses, the log-linear correction was applied 

to account for response proportions of 0 and 1 (Snodgrass & Corwin, 1988). In the 

recognition model, memory strength was measured by d’, calculated as z(H)-z(F), and bias 

was measured by c, calculated as −.5[z(H)+z(F)], where H and F refer to hit and false alarm 

rates, respectively. For source memory, we restricted the analysis to those words correctly 

recognized as old. Here, discriminability between words from the self-reference and valence 

task was measured by d’, calculated as z(S)-z(V), and bias was measured by c, calculated 

as −.5[z(S)+z(V)], where S and V refer to the proportion of “self-reference” responses for 

words actually from the self-reference and valence tasks, respectively. Again, although the 

recognition and source memory behavioral analyses focus on accuracy for studied items, 

both studied and unstudied items were included in model fits.

Regression Models—To examine the impact of BDI scores on performance, we analyzed 

the behavioral data and the HDDM2 and SDT model parameters with Bayesian regression 

models conducted with the R package rstanarm. Default priors and sampling parameters 

were used unless otherwise indicated (Goodrich, Gabry, Ali, & Brilleman, 2020). All 

models converged and were validated with posterior predictive checks. Inferences are 

made by calculating the 95% HDI around the mean of the posterior estimate of a given 

regression coefficient, as above. When included as a predictor, BDI score was always treated 

continuously rather than categorically (i.e., groups based on predetermined cutoffs).

Results

In each section below, we first show and describe the data, then perform the analyses. 

Because the analyses are extensive, only the most relevant results are presented in the text; 

additional details are reported in tables or the Supplemental Material as indicated. The data 

are provided at https://osf.io/w9asj/.

BDI Scores

BDI scores covered nearly the entire range (see Figure S1 in the Supplemental Material), 

but clustered at the lower end with a median of 13. Mean BDI scores were higher for 

females (M=15.46, SD=11.74) than males (M=14.12, SD=10.89) and correlated negatively 

with age (r=−0.18). These observations were supported by a Bayesian negative binomial 

regression model: BDI age + gender. The 95% HDIs for the estimated coefficients of male 

2Though inferences regarding categorical predictors can be drawn from the posteriors of HDDM fits alone, BDI scores are instead 
analyzed via subsequent regressions on subject-level parameters. An alternative approach incorporating BDI score into the model 
fits is possible the HDDMRegressor; however, given the size of our data set, this would incur a high computational cost with little 
expected quantitative benefit.

Cataldo et al. Page 7

J Exp Psychol Gen. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/w9asj/


gender (−0.22:−0.03) and age (−0.02:−0.01) were entirely below zero, so age and gender 

were included as co-variates in all subsequent analyses. For brevity, we do not consider 

interactions of age and gender with the effects discussed below; those could be pursued in 

future work.

Encoding

As shown in Figure 3a (left panel), on average participants responded “yes” to more positive 

than negative words in the self-reference task. They also responded “yes” (indicating that the 

word was positive) to more positive than negative words in the valence task (right panel), 

and to a greater degree than in the self-reference task; this is unsurprising given that, in the 

valence task, participants were asked to indicate whether words were positive. As expected, 

Figure 3b shows that as BDI scores increased, participants endorsed more negative but 

fewer positive words as self-descriptive (left panel). Unexpectedly, participants with higher 

BDI scores were also more likely to disagree with normative valence ratings; that is, they 

were less likely to judge normatively positive words as positive but more likely to judge 

normatively negative words as positive (right panel).

As illustrated in Table 1, these patterns were all statistically 

supported by a Bayesian mixed effects logistic regression model: 

p “yes” age + gender + valence ∙ task ∙ BDI + 1 subject + 1 word . Most critically, the 

model estimates that as BDI score increases, participants are more likely to respond “yes” 

to negative words but are less likely to repond “yes” to positive words shown in the 

self-reference task, with similar but reduced effects in the valence task.

Recall

As shown in Figure 4a, participants recalled more positive than negative words as well as 

more words from the self-reference task versus the valence task. There does not appear to 

be an interaction between valence and task: The recall advantage for positive vs. negative 

words was about the same for words recalled from both tasks. As shown in Figure 4b, higher 

BDI scores were associated with poorer recall of positive words but slightly better recall of 

negative words, with this effect appearing for words from both the self-reference (left panel) 

and valence (right panel) tasks.

As illustrated in Table 2, these observations were confirmed by a Bayesian mixed effects 

Poisson regression model: # recalled age + gender + valence ∙ task ∙ BDI + 1 subject . 

Notably, the model estimates that as BDI score increases, the number of correctly recalled 

positive words decreases but the number of correctly recalled negative words does not 

reliably change, with no additional interactions of BDI with encoding task for either positive 

or negative words.

Recognition

Recognition Accuracy for Old Words—Because the effects of encoding task on 

recognition accuracy cannot be easily incorporated into the HDDM and SDT analyses, 

we begin by briefly describing the hit rate data separately for words from each task 

before drawing inferences from the models. A full analysis is provided in the Supplemental 
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Material. As shown in Figure S2a, participants correctly recognized more old positive versus 

old negative words, and more words from the self-reference versus valence task. These 

effects do not appear to interact: The recognition advantage for positive vs. negative words 

appears similar for words from both tasks. As shown in Figure S2b, higher BDI scores were 

associated with better recognition of negative words from both tasks, with perhaps slightly 

poorer recognition of positive words from the self-reference task. As described in the 

Supplemental Material, all observations were confirmed by a Bayesian mixed effects logistic 

regression model: p “old” age + gender + valence ∙ task ∙ BDI + 1 subject + 1 word .

HDDM—Figure 5a presents the estimated mean drift rates by condition, with error bars 

that depict 95% HDIs from the Bayesian model fits. Recall that positive and negative 

values indicate evidence accumulation towards “old” and “new” responses, respectively. As 

shown in the left panel, evidence accumulated more efficiently towards an “old” response 

for old positive versus old negative words. In contrast, the right panel shows that evidence 

accumulated slightly less efficiently towards a “new” response for new positive versus new 

negative words.

Figure 5b shows that, as BDI score increases, drift rate increases for negative words—

especially old negative words—whereas drift rate for positive words is weakly decreased. 

That is, as depressive symptoms increase, participants accumulate more evidence towards 

an “old” response for negative words and a “new” response for positive words, whether 

or not words were actually old or new (i.e., regardless of study status). The observed 

effects of BDI on drift rates were supported by a Bayesian mixed effects regression 

model: v age + gender + valence ∙ study ∙ BDI + 1 subject  (see Table 3). We note that this 

systematic pattern suggests a potential role of bias not accounted for in the model. More 

detailed consideration of this point is provided in the Discussion.

Bayesian regression models were also conducted to evaluate the effect of BDI score on 

threshold a, starting point bias z, and non-decision time t0: parameter age + gender + BDI. 

As BDI scores increased, participants exhibited weakly decreased thresholds (95% HDI: 

−0.003:0.000), a weakly increased bias towards “old” responses (95% HDI: 0.000:0.001), 

and weakly increased non-decision times (95% HDI: 0.000:0.001).

SDT—Figure 6a presents the SDT parameters for memory strength (d’, left column) and 

bias (c, right column). As can be seen, participants exhibited greater memory strength and 

a weaker tendency to respond “new” to positive than negative words, with a conservative 

response bias across valences. Figure 6b reveals that, unexpectedly, memory strength for 

positive and negative words was unaffected by BDI score, as was response bias for 

positive words. By contrast, c decreased with BDI score for negative words, indicating 

greater willingness to endorse both old and new negative words as “old” as the severity 

of depression increases. This selective effect of BDI on response bias for negative words 

likely contributes to the positive association observed between BDI scores and hit rates for 

negative words, but not positive words (see Figure S2), and further supports a role of bias 

not captured by the HDDM.
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Each parameter was analyzed with a Bayesian mixed effects regression model: 

parameter age + gender + valence ∙ BDI + 1 subject  (see Table 4). Supporting the above 

impressions, the model does not estimate a relationship between BDI score and d’ for either 

positive or negative words, or between BDI score and c for positive words3; however there 

was a modest negative association between BDI scores and c for negative words.

Re-analysis Excluding Recalled Items—It is possible that by testing free recall 

before recognition memory, item effects were introduced for recalled words. We therefore 

repeated all the above analyses—analysis of recognition hit rates, HDDM, and SDT—with 

recalled words excluded; see the Supplemental Materials for details. Results were essentially 

unchanged, indicating that the recognition findings were not strongly influenced by free 

recall performance.

Source Accuracy

Source accuracy for old words—As for the recognition analyses, because the effects 

of encoding task cannot be easily incorporated into the HDDM and SDT analyses of 

source accuracy, we begin by briefly describing the response proportions from each task 

separately before drawing inferences from the models. A full analysis is provided in 

the Supplemental Material. As predicted, Figure S6a reveals greater source accuracy for 

positive than negative words from the self-reference task. Surprisingly, however, source 

accuracy was higher for negative than positive words from the valence task. Figure 

S6b (left panel) shows that as BDI scores increased, source accuracy improved for 

negative words but decreased for positive words from the self-reference task. However, 

the opposite pattern was found for words from the valence task (right panel): here, 

increased BDI scores were associated with lower source accuracy for negative words but 

higher source accuracy for positive words. As described in the Supplemental Material, 

all observations were confirmed by a Bayesian mixed effects logistic regression model: 

p correct age + gender + valence ∙ task ∙ BDI + 1 subject + 1 word .

HDDM—Figure 7a presents the estimated mean drift rates by condition, with error bars 

that depict 95% HDIs from the Bayesian model fits. Recall that positive and negative 

values indicated evidence accumulation towards “self-reference” and “valence” responses, 

respectively. Appropriately, participants had positive drift rates for words from the self-

reference task (left panel) and negative drift rates for words from the valence task (right 

panel). For words from the self-reference task, evidence accumulated more efficiently 

towards a “self-reference” response for positive words relative to negative words. For words 

from the valence task, evidence accumulated less efficiently towards a “valence” response 

for positive vs. negative words.

As shown in Figure 7b, as BDI score increased participants tended to accumulate evidence 

in favor of a “self-reference” response for negative words and a “valence” response for 

positive words, and this pattern did not vary strongly depending on which task the words 

3Though the 95% HDI for the interaction of positive valence and BDI scores on c (positive:BDI) is entirely above zero, this merely 
serves to counteract the negative effect of BDI on c for negative words, thereby estimating the same null effect of BDI on positive 
words observed in Figure 6b.
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were actually from (i.e., both panels show the same basic pattern). The observed effects 

of BDI on drift rates were supported by a Bayesian mixed effects regression model: 

v age + gender + valence ∙ source ∙ BDI + 1 subject  (see Table 3). As for the recognition 

results, this pattern again suggests a potential role of bias not currently accounted for in the 

model, which we detail in the Discussion section.

Bayesian regression models were also conducted to evaluate the effect of BDI score on 

threshold a, starting point bias z, and non-decision time t0: parameter age + gender + BDI. 

As BDI score increased, participants exhibited decreased thresholds (95% HDI: 

−0.005:−0.001), no discernable change in starting point bias (95% HDI: 0.000:0.000), and 

weakly increased non-decision times (95% HDI: 0.000:0.002).

SDT—Figure 8a presents source discriminability between the self-reference and valence 

tasks (d’, left panel) as well as bias towards a “valence” source attribution (c, right panel). 

As shown on the left, participants exhibited greater source discriminability for positive 

versus negative words. The right panel reveals that response bias was liberal for positive 

words but conservative for negative words, indicating that participants tended to attribute 

positive words to the self-reference task but negative words to the valence task. Figure 

8b presents the SDT parameters (d’, left column; c, right column) as a function of BDI 

score. Higher BDI scores were associated with weakly decreased source discriminability 

for positive words, with no effect on negative words. Furthermore, as BDI score increases, 

response bias decreases for negative words but increases for positive words; in the context of 

source judgments, this indicates that participants with low BDI scores tended to attribute 

negative words to the valence task and positive words to the self-reference task, but 

participants with high BDI scores tended to attribute negative words to the self-reference 

task and positive words to the valence task. This crossover effect of BDI and valence 

on response bias likely contributes to the startlingly symmetric effects of BDI on source 

accuracy for positive vs. negative items (see Figure S6 in the Supplemental Material).

The above impressions were supported by a Bayesian mixed effects regression model for 

each parameter: parameter age + gender + valence ∙ BDI + 1 subject  (see Table 4). As seen 

in Figure 8b, higher BDI scores are weakly associated with lower values of d’ for positive 

words but not negative words. Much stronger associations are indicated between BDI score 

and c, with higher BDI scores associated with an increased tendency to attribute positive 

words to the valence task but negative words to the self-reference task.

Source Attributions for Recognition False Alarms—The analyses of recognition and 

source memory consistently indicate a role for bias. To further explore this possibility, recall 

that at recognition, participants were asked to report the encoding task for each word that 

they endorsed as “old”. Though source attributions for recognition hits can be driven by 

either memory strength or response bias, such attributions for recognition false alarms can 

only reflect bias. Thus, an effect of BDI on source attributions for recognition false alarms 

would suggest a key role for bias. As detailed in the Supplemental Material, we find such 

an effect. Specifically, low BDI scores are associated with a greater probability of attributing 

positive versus negative false alarms to the self-reference task, whereas the opposite pattern 

is found for high BDI scores (see Figure S7 in the Supplemental Material). HDDM fits 
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suggest that this is driven by faster accumulation towards a “self-reference” response for 

negative, but not positive, items as BDI score increases (see Figure S8 in the Supplemental 

Material). We consider the possibility that this reflects a systematic sampling bias in the 

Discussion.

Discussion

Previous research has found that while healthy adults tend to show better memory for 

low-arousing positive vs. negative stimuli, this advantage is reduced in depressed adults 

(Burt et al., 1995; Matt et al., 1992). Although the clinical importance of memory deficits 

in depression is increasingly recognized (Askelund et al., 2019; Dalgleish & Werner-Seidler, 

2014; Sumner et al., 2010), the underlying mechanisms driving these deficits remain unclear. 

Computational modeling offers a powerful method of isolating the specific psychological 

mechanisms underlying memory, and previous applications of the Drift Diffusion Model 

(DDM; Ratcliff & McKoon, 2008) have suggested that the positive memory advantage—

and its compromise in depression—is the result of differential evidence accumulation for 

positive versus negative material (White et al., 2009). In the present study, we replicated 

the positive memory advantage and its reduction in depression in a large online sample. 

Specifically, although participants overall demonstrated better recall, recognition, and source 

accuracy for positive versus negative stimuli, the positive memory advantage decreased with 

increased depressive symptoms reported on the BDI. Fitting the recognition and source 

accuracy data with the HDDM revealed more efficient evidence accumulation for positive 

versus negative stimuli, but the size of this effect decreased with increasing BDI scores 

due to increased drift rate for negative words (in the recognition and source tests) and 

reduced drift rate for positive words (in the source test). Overall, this indicates that the 

positive memory advantage and its reduction in depression stems largely from effects on the 

evidence accumulation process.

Our multi-staged behavioral and modeling analyses yielded several additional insights. 

First, at encoding, higher BDI scores were associated with a decreased probability of 

endorsing positive words and a correspondingly increased probability of endorsing negative 

words as self-referential. Surprisingly, a weaker but similar effect was seen for the valence 

task, where higher BDI scores were associated with a decreased probability of judging 

positive words as positive, but an increased probability of judging negative words as 

positive. Two considerations are worth noting here. First, because the BDI is related 

to greater disagreement with normative valence, an interesting question is whether the 

recognition results differ when analyzed according to subjective valence. This is an 

important consideration, but because the effect of BDI on valence judgments is relatively 

small, and because such an analysis would require quartering the number of trials (to include 

only studied words from the valence task; old words from the self-referential task and 

all new words would be excluded), the current paradigm is underpowered for this line of 

questioning. We therefore leave this issue as a target for future work. Second, interpretation 

of these results is limited by the lack of attention checks in the current study, which leaves 

open the possibility that disagreement with normative valence reflects reduced engagement 

from participants with greater depressive symptoms (see Zorowitz, Niv, & Bennett, in prep, 

for detailed discussion). A holistic view of the data, however, suggests that the impact 
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of BDI on encoding behavior may truly be task-general, because this pattern extends to 

the recall and recognition stages. Specifically, the effect of BDI on recall and recognition 

memory was similar for words from both encoding tasks, despite better overall memory 

for words from the self-reference task. By pairing the self-referential encoding task with 

a valence judgement task, the current study disentangles two separate effects that are 

otherwise confounded: a levels-of-processing effect that globally enhances encoding and 

subsequent memory for words from the self-referential encoding task (Craik & Tulving, 

1975; Rogers et al., 1977), plus a depression effect that depends heavily on stimulus valence 

but that can be seen whether or not self-referential processing is manipulated.

A second insight is that although the positive memory advantage decreased with higher 

BDI score in each memory test, whether this occurred due to poorer memory for positive 

stimuli versus improved memory for negative stimuli varied. Specifically, whereas poorer 

memory for positive stimuli appears to have driven the effect of BDI at recall, performance 

at recognition appears to be driven by improved evidence accumulation for negative stimuli, 

and performance at source accuracy appears to result from both. This variability across tests 

may help explain similarly diverse findings in previous literature. Specifically, consistent 

with the present findings, depression has been associated with stronger effects on memory 

for positive versus negative stimuli for recall (Auerbach et al., 2015; Burt et al., 1995), and 

with effects in both directions for source memory (Dillon et al., 2014). The recognition 

literature is less consistent; although some work has found specific effects on memory for 

negative material (Hamilton & Gotlib, 2008), other have found effects in both directions 

(Dunbar & Lishman, 1984; Rouhani & Niv, 2019). This pattern of results indicates an 

interesting target for future work on potential neural correlates. Specifically, depression is 

thought to exert many of its negative effects by impairing hippocampal function (MacQueen 

& Frodl, 2011). Free recall is strongly hippocampal-dependent, whereas recognition draws 

more heavily on familiarity, with source memory falling between the two. Thus, these 

results raise the interesting possibility that asymmetric memory for positive vs. negative 

material may be driven by differential connectivity between regions traditionally involved 

in the processing of positive and negative material (e.g., ventral striatum and amygdala, 

respectively) and the hippocampus, which is itself differentially activated across tasks. 

Targeting such mechanisms remains a goal for future work.

From a behavioral perspective, a leading candidate for this pattern of results is a valence-

dependent retrieval bias. Indeed, in the recognition test higher BDI scores were clearly 

associated with an increased bias to endorse negative words as old. This account would seem 

to fail with respect to the free recall data, where—if a negative bias were critical—one might 

expect increased BDI scores to be associated with enhanced recall of negative words, and 

perhaps a large number of negative intrusions, rather than the decrease in positive recall that 

was observed. One interpretation is that such a bias may be moderated by task effort, which 

is generally higher in recall vs. recognition. But a limitation of the study is also pertinent 

here: Participants could quit the recall task whenever they wanted, and it is well-known that 

people tend to stop recalling items long before their memory is exhausted (Wixted & Rohrer, 

1994). Given that low motivation is a common aspect of depressive illness (see Grahek et al., 

2019 for review), it is plausible that participants with high BDI scores quit the recall task too 

quickly, before an increase in the number of negative words recalled could be seen. A related 
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possibility is that in adults with high BDI scores, negative words come to mind relatively 

easily but dredging up positive words is difficult, such that these individuals recalled a few 

negative words but quit the test before recalling a similar number of positive words; this 

would give rise to the observed pattern of recall findings.

A particularly fascinating aspect of these data concerns performance on the source memory 

test; here, higher BDI scores were associated with a bias to assign negative words to the 

self-reference source while assigning positive words to the valence source. In contrast to the 

recall and recognition results, which did not depend heavily on self-referential processing, 

the tendency of more depressed adults to misremember negative words as having been 

encoded in relation to the self is striking and speaks to the overly negative self-concept in 

depressive illness (Strauman, 2002, 2017). Moreover, the near-perfect symmetry between the 

two valence conditions—in which the effect on self-reference attributions for negative words 

is mirrored by the effect on valence attributions for positive words—suggests a remarkably 

complementary relationship that is not inherent to the model structure itself. Though it is 

possible that bias plays a role in producing these results, the exact nature of this relationship 

is an open question for future work, as we discuss below.

A third insight, consistent with results from White et al (2009), is that the modeling indicates 

that the positive memory advantage and its reduction in depression reflect differences 

in the speed of evidence accumulation for positive versus negative material. We believe 

this is a valuable foundation for future research seeking to characterize memory deficits 

in depression because evidence accumulation is a more narrowly defined construct than 

response bias or discriminability and its neural correlates are at least partially understood 

(Gold & Shadlen, 2007; Shadlen & Shohamy, 2016). However, our concurrent analyses 

of behavioral and signal detection measures suggest that future research on this topic 

ought to carefully consider the nature of the effect on evidence accumulation. Again, both 

the recognition and source accuracy SDT results indicate strong effects of BDI score on 

bias, with only subtle effects on discriminability. This would seem slightly at odds with 

the HDDM results, which pointed to effects on evidence accumulation that are typically 

associated with differences in discriminability, not bias (Ratcliff & McKoon, 2008).

One possible exaplanation for these apparent discrepancies is that the effect on evidence 

accumulation observed here in fact reflects biased sampling, measured by drift criterion 

(Ratcliff, 1978; Scimeca, Katzman, & Badre, 2016; Starns, Ratcliff, & White, 2012). 

Whereas drift rates correspond to evidence strength, drift criterion determines the probability 

that each bit of accumulated evidence should count in favor of one response boundary or the 

other, much like the bias parameter c in SDT. This process is in fact directly analogous to 

imposing a basic signal detection model at each step in the accumulation process. That is, 

at each step, a piece of evidence is sampled. If it exceeds the criterion, it is judged in favor 

of an “old” response and evidence accumulates upward, otherwise it is judged in favor of 

a “new” response and evidence accumulates downward. Thus, a drift criterion that is low 

relative to the old and new drift rates will bias sampled evidence towards an “old” response. 

It is plausible that, as BDI scores increase, the drift criterion for responding “old” might 

decrease so as to be lower for negative but not positive items, reflecting a disturbance in how 

adults with depression act upon negative memories. Alternatively, the drift criterion may be 
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unaffected while drift rates increase for both old and new negative items, reflecting a false 

sense of familiarity for all negative material in depression (e.g., Bowen, Kark, & Kensinger, 

2018).

A drift criterion that is lower relative to both old and new drift rates for negative (but 

not positive) words would be consistent with our SDT results, as we found a decrease 

in c with increased BDI score for negative material. Unfortunately, because the HDDM 

can only capture the relative value of drift rate vs. drift criterion, accounts of biased 

sampling vs. false familiarity cannot be disentangled by model fits alone, and so it is not 

possible to decide between these two possibilities in the current dataset. Instead, studies 

employing experimental manipulations designed to target each process (e.g., Starns, Dubé, 

& Frelinger, 2018; Starns et al., 2012) are needed, and this may be profitable because recent 

work indicates that striatal prediction errors—a topic of perennial interest to depression 

researchers—affect the drift criterion (Scimeca et al., 2016). Further, though the models are 

accounting for behavior at retrieval, they remain agnostic as to whether increased memory 

strength or biased responding are ultimately driven by differences in processing at encoding 

or retrieval. Neuroimaging research could thus target this important issue, and could provide 

additional insight into the neural basis of the effects observed here.

Lastly, this work takes a step towards increased reproducibility of memory research in 

depression. Online data collection yielded a substantial sample of 1,358 subjects who are 

racially diverse and span a wide age range. Further, the Bayesian approach to both our 

behavioral and modeling analyses shifts the focus of the results from statistical significance 

to effect size estimation. Together, these components provide a solid foundation for future 

work to consider when generating novel predictions. Indeed, the reported task and valence 

effects were initially discovered in two additional samples, who completed the task but not 

the BDI (see Supplemental Material).

Our multi-stage analyses and Bayesian approach offer a well-informed starting point for 

future work, with results that indicate several avenues for targeted studies. There are also 

several limitations to the current work for future studies to address. First, the effect of recall 

performance on subsequent recognition and source accuracy behavior is unclear. Although 

no feedback was given at recall, it is fair to assume that correctly recalled words are 

also more likely to be (1) correctly recognized and (2) attributed to the correct source. 

Encouragingly, a re-analysis of the current recognition data excluding recalled words found 

that the main results were essentially unchanged (see Supplemental Material). Nevertheless, 

future research may wish to more closely the examine effects of recall on subsequent 

tests of recognition and source memory in depressed adults. Second, collecting data online 

allowed us to reach a large and diverse sample of participants, but it prohibited clinical 

testing for depression, and a desire to not overburden participants led us to collect the BDI 

as our only clinical measure. Consequently, while we can make claims about depressive 

severity, we cannot rule out possible contributions from conditions that are typically 

comorbid with depression, such as generalized anxiety, and we cannot assume that these 

results will generalize to adults diagnosed with Major Depressive Disorder, although we 

expect that that would be the case. Follow-up studies with in-person data collection and 

diagnostic interviews are needed to address these issues. Third, the present study relied 
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exclusively on behavioral data. By combinining behavioral data with SDT and HDDM 

analyses, we were able to begin characterizing the psychological processes responsible for 

altered emotional memory in depressed adults. However, the power of this approach would 

be greatly amplified by future work linking model parameters with EEG or fMRI data, 

as this will let us tie evidence accumulation (and the other parameters) to their neural 

underpinnings. This kind of model-informed neuroscientific analysis will ultimately give us 

a detailed understanding of the impact of depressive illness on the encoding and retrieval of 

emotional memories.

Context

Our group is interested in the neurocognitive mechanisms underlying psychiatric disorders. 

Members of the Motivated Learning & Memory Lab—Drs. Cataldo, Maksimovskiy, and 

Dillon—maintain a focus on identifying the subprocesses of memory and decision-making 

that are compromised in depression (e.g., Dillon, 2015; Dillon et al., 2014; Lawlor et 

al., 2020). Members of the Laboratory for Brain and Cognitive Health Technology—Mr. 

Scheuer and Dr. Germine—focus on individual differences in cognition and mental health, 

and developing technology to study cognition and behavior in large and diverse online 

samples (see TestMyBrain.org). This collaborative study was motivated by previous research 

demonstrating that while healthy adults tend to show better memory for low-arousing 

positive vs. negative stimuli, this advantage is reduced in depressed adults (Burt et al., 1995; 

Matt et al., 1992). Although the clinical importance of memory deficits in depression is well 

established (Askelund et al., 2019; Dalgleish & Werner-Seidler, 2014; Sumner et al., 2010), 

our group is interested in isolating the upstream mechanisms driving these deficits. Thus, in 

the present study, we applied a computational modeling approach to data from a large and 

diverse online sample to provide a detailed account of the mechanisms driving the positive 

memory reduction in depression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of the Drift Diffusion Model (DDM; Ratcliff & McKoon, 2008).
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Figure 2. 
Diagram of the memory task, including (a) encoding, (b) free recall, and (c) the recognition 

memory test, which included a source memory test for words endorsed as “old” at 

recognition. A progress bar was presented at the top of the screen during each stage.
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Figure 3. 
Proportion of “yes” responses at encoding. In each panel, columns denote encoding task 

(left: self-reference task, right: valence task), and colors denote normative valence (blue: 

positive, red: negative). Error bars and bands represent 95% bootstrap confidence intervals 

(Waskom et al., 2017). In Panel (b), dashed vertical lines denote standard cutoffs for mild, 

moderate, and severe depression. Panel (a) depicts a higher average proportion of “yes” 

responses to positive than negative words in both encoding tasks. Panel (b) demonstrates 
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that as BDI scores increase, participants endorsed more negative but fewer positive words as 

self-descriptive (self-reference task) and positive (valence task).
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Figure 4. 
Number of correctly recalled words. In each panel, columns denote encoding task (left: 

self-reference task, right: valence task), and colors denote normative valence (blue: positive, 

red: negative). Error bars and bands represent 95% bootstrap confidence intervals (Waskom 

et al., 2017). In Panel (b), dashed vertical lines denote standard cutoffs for mild, moderate, 

and severe depression. Panel (a) depicts a higher average number of recalled positive vs. 

negative words from each encoding task, and a higher average number of words recalled 

from the self-reference task overall. Panel (b) demonstrates that higher BDI scores were 
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associated with poorer recall of positive words but slightly better recall of negative words 

from both encoding tasks.
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Figure 5. 
HDDM drift rate estimates for the recognition data. Positive values indicate evidence 

accumulation towards an “old” response, while negative values indicate evidence 

accumulation towards a “new” response. In each panel, columns denote study status (left: 

old/studied words, right: new/unstudied words), and colors denote normative valence (blue: 

positive, red: negative). Error bars in panel (a) represent 95% HDIs. Error bands in panel 

(b) represent 95% bootstrap confidence intervals (Waskom et al., 2017). In Panel (b), dashed 

vertical lines denote standard cutoffs for mild, moderate, and severe depression. Panel (a) 
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depicts more efficient evidence accumulation towards an “old” response for old positive 

vs. old negative words, but less efficient accumulation towards a “new” response for new 

positive vs. new negative words. Panel (b) demonstrates that as BDI scores increase, drift 

rate increases (towards an “old” response) for negative words but weakly decreases (towards 

a “new” response) for positive words, regardless of whether the word was actually old or 

new.
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Figure 6. 
SDT parameter values for the recognition data. In each panel, columns denote parameter 

(left: d’, right: c), and colors denote normative valence (blue: positive, red: negative). Error 

bars and bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). In Panel 

(b), dashed vertical lines denote standard cutoffs for mild, moderate, and severe depression. 

Panel (a) depicts higher average values of d’ and lower (more liberal) average values of c 
for positive vs. negative words. Panel (b) demonstrates that as BDI score increases, d’ is 

unaffected but c decreases (becomes more liberal) for negative words.
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Figure 7. 
HDDM drift rate estimates for source memory. In each panel, columns denote encoding 

task (left: self-reference task, right: valence task), and colors denote normative valence 

(blue: positive, red: negative). Error bars in panel (a) represent 95% HDIs. Error bands 

in panel (b) represent 95% bootstrap confidence intervals (Waskom et al., 2017). In Panel 

(b), dashed vertical lines denote standard cutoffs for mild, moderate, and severe depression. 

Panel (a) depicts more efficient evidence accumulation towards a “self-reference” response 

for positive vs. negative words from the self-reference task, but less efficient accumulation 
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towards a “valence” response for positive vs. negative words from the valence task. Panel 

(b) demonstrates that as BDI scores increase, drift rate increases (towards a “self-reference” 

response) for negative words but decreases (towards a “valence” response) for positive 

words, regardless of task.
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Figure 8. 
SDT parameter values for source memory. In each panel, columns denote parameter (left: 

d’, right: c), and colors denote normative valence (blue: positive, red: negative). Error bars 

and bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). In Panel 

(b), dashed vertical lines denote standard cutoffs for mild, moderate, and severe depression. 

Panel (a) depicts higher average values of d’ and lower (more liberal) average values of c for 

positive vs. negative words. Panel (b) demonstrates that as BDI score increases, d’ decreases 

slightly for positive words but is unaffected for negative words, and that c decreases 
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(becomes more liberal) for negative words but increases (becomes more conservative) for 

positive words. In the context of this model, the results for c indicate that higher BDI scores 

are associated with a greater tendency to attribute old negative words to the self-referential 

encoding task and old positive words to the valence task.
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Table 1.

Estimated effects of age, gender, word valence, encoding task, and BDI on encoding response

Mean Lower HDI Upper HDI R-hat

(Intercept) −2.481 −2.741 −2.215 1.005

age −0.003 −0.006 0.000 1.000

genderqueer 0.187 −0.067 0.441 1.001

male 0.093 0.016 0.173 1.000

positive word 4.103 3.783 4.427 1.003

valence task −0.562 −0.683 −0.439 1.000

BDI 0.056 0.052 0.060 1.000

positive word:valence task 1.790 1.639 1.947 1.000

positive word:BDI −0.095 −0.099 −0.090 1.000

valence task:BDI −0.018 −0.023 −0.012 1.000

positive word:valence task:BDI 0.024 0.017 0.032 1.000

Note: The HDI represents the 95% highest density interval from the posterior distribution.

The reference level is a female participant responding to a negative word in the self-reference task.
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Table 2.

Estimated effects of age, gender, word valence, encoding task, and BDI on number of correctly recalled words

Mean Lower HDI Upper HDI R-hat

(Intercept) 0.236 0.120 0.353 1.003

age −0.012 −0.014 −0.009 1.004

genderqueer 0.178 −0.019 0.375 1.001

male −0.087 −0.147 −0.024 1.001

positive word 0.307 0.221 0.394 1.000

valence task −0.176 −0.272 −0.077 0.999

BDI −0.001 −0.005 0.003 1.001

positive word:valence task 0.036 −0.091 0.169 0.999

positive word:BDI −0.008 −0.012 −0.003 0.999

valence task:BDI 0.000 −0.005 0.005 0.999

positive word:valence task:BDI 0.001 −0.006 0.008 0.999

Note: The HDI represents the 95% highest density interval from the posterior distribution.

The reference level is a female participant recalling negative words from the self-reference task.
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Table 3.

Estimated effects of age, gender, relevant task conditions, and BDI on drift rates

Mean Lower HDI Upper HDI R-hat

Recognition

 (Intercept) −0.960 −1.004 −0.913 1.000

 age −0.001 −0.001 0.000 1.000

 genderqueer 0.032 −0.043 0.111 1.000

 male 0.018 −0.005 0.041 1.000

 positive word 0.126 0.083 0.170 0.999

 old word 1.739 1.695 1.782 1.000

 BDI 0.001 0.000 0.003 0.999

 positive word:old word 0.260 0.201 0.323 1.000

 positive word:BDI −0.003 −0.005 0.000 0.999

 old word:BDI 0.003 0.000 0.005 0.999

 positive word:old word:BDI −0.003 −0.006 0.000 0.999

Source Memory

 (Intercept) 0.170 0.114 0.224 0.999

 age 0.000 −0.001 0.001 1.000

 genderqueer 0.007 −0.073 0.090 0.999

 male −0.005 −0.028 0.018 1.000

 positive word 0.669 0.614 0.726 0.999

 valence task −0.863 −0.919 −0.807 0.999

 BDI 0.007 0.005 0.009 0.999

 positive word:valence task −0.301 −0.380 −0.223 1.000

 positive word:BDI −0.013 −0.016 −0.010 1.000

 valence task:BDI −0.002 −0.005 0.001 0.999

 positive word:valence task:BDI 0.004 0.000 0.008 0.999

Note: The HDI represents the 95% highest density interval from the posterior distribution.

For recognition, the reference level is a female participant responding to a new negative word.

For source memory, the reference level is a female participant responding to a negative word from the self-reference task.
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Table 4.

Estimated effects of age, gender, word valence, and BDI on SDT parameters

d’ c

Mean Low HDI Upper HDI R-hat Mean Lower HDI Upper HDI R-hat

Recognition

 (Intercept) 2.484 2.365 2.603 1.002 0.492 0.435 0.549 1.002

 age −0.011 −0.013 −0.008 1.001 0.001 0.000 0.003 1.003

 genderqueer 0.001 −0.220 0.235 1.002 0.045 −0.061 0.156 1.001

 male −0.096 −0.165 −0.029 1.000 −0.004 −0.036 0.029 1.001

 positive word 0.140 0.089 0.193 0.999 −0.150 −0.183 −0.117 0.999

 BDI −0.003 −0.006 0.001 1.000 −0.002 −0.004 0.000 1.001

 positive:BDI −0.001 −0.004 0.002 0.999 0.003 0.001 0.004 0.999

Source Memory

 (Intercept) 1.288 1.126 1.447 1.001 0.191 0.115 0.268 1.000

 age −0.009 −0.012 −0.005 1.001 0.001 0.000 0.003 1.000

 genderqueer 0.218 −0.080 0.532 1.003 −0.005 −0.142 0.136 1.000

 male −0.107 −0.200 −0.009 1.004 −0.001 −0.044 0.042 1.000

 positive word 0.249 0.175 0.326 0.999 −0.555 −0.619 −0.487 0.999

 BDI −0.002 −0.007 0.002 1.001 −0.009 −0.012 −0.007 1.000

 positive:BDI −0.004 −0.008 0.000 0.999 0.016 0.012 0.019 0.999

Note: The HDI represents the 95% highest density interval from the posterior distribution.

For both recognition and source memory, the reference level is a female participant responding to a negative word.
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