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ABSTRACT
BACKGROUND: Deficits in cognitive performance are implicated in the development and maintenance of psycho-
pathology. Emerging evidence further suggests that within-person fluctuations in cognitive performance may
represent sensitive early markers of neuropsychiatric decline. Incorporating routine cognitive assessments into
standard clinical care—to identify between-person differences and monitor within-person fluctuations—has the
potential to improve diagnostic screening and treatment planning. In support of these goals, it is critical to
understand to what extent cognitive performance varies under routine, remote assessment conditions (i.e.,
momentary cognition) in relation to a wide range of possible predictors.
METHODS: Using data-driven, high-dimensional methods, we ranked strong predictors of momentary cognition and
evaluated out-of-sample predictive accuracy. Our approach leveraged innovations in digital technology, including
ambulatory assessment of cognition and behavior 1) at scale (n = 122 participants, n = 94 females), 2) in
naturalistic environments, and 3) within an intensive longitudinal study design (mean = 25.5 assessments/participant).
RESULTS: Reaction time (R2 . 0.70) and accuracy (0.56 . R2 . 0.35) were strongly predicted by age, between-
person differences in mean performance, and time of day. Effects of self-reported, intraindividual fluctuations in
environmental (e.g., noise) and internal (e.g., stress) states were also observed.
CONCLUSIONS: Our results provide robust estimates of effect size to characterize sources of cognitive variability, to
support the identification of optimal windows for psychosocial interventions, and to possibly inform clinical evaluation
under remote neuropsychological assessment conditions.

https://doi.org/10.1016/j.bpsc.2022.12.002
Cognitive performance refers to the speed and accuracy of
responding on tasks designed to measure attention, memory,
processing speed, perceptual reasoning, and executive func-
tioning (1,2). Cognitive performance is associated with short-
and long-term aspects of physical (e.g., cardiovascular dis-
ease), mental (e.g., suicidality), and public (e.g., accident
proneness) health (3–5). Beyond simple associations, cognitive
performance deficits are implicated in the development and
maintenance of psychopathology (6–11), while improvements
predict successful psychosocial and adaptive functioning (12).
Emerging evidence further suggests that within-person fluc-
tuations in cognitive performance represent sensitive early
markers of neuropsychiatric decline (13). Against this back-
drop, incorporating routine cognitive assessments into stan-
dard care—to identify between-person differences and
monitor within-person fluctuations—has the potential to
improve diagnostic screening and treatment planning. For
example, such assessments may be used as population-level
screeners to ascertain individuals at heightened risk for
cognitive decline (14–16), or they may be used in treatment to
support timely delivery of psychosocial interventions when
patients are most likely to respond (17).

To be practicable for routine administration, cognitive as-
sessments must be psychometrically sound under remote
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testing conditions, scalable, and ultrabrief (18). In recent years,
research groups have validated digital cognitive assessments
that meet these criteria (19,20), and best-practice guidelines
for developing and evaluating digital cognitive assessments
have been proposed (18,21). We refer to cognitive perfor-
mance under routine, remote assessment conditions as
momentary cognition. Hypothesis-driven research has rapidly
advanced current understanding of whether, and to what
extent, predictors of a priori interest explain variation in
momentary cognition [for a review, see (22)]. However, caution
is warranted when interpreting hypothesis-driven research in
the absence of data-driven exploration. In genetics (pre-
genomics), hypothesis-driven studies of candidate genes
routinely identified significant yet inconsequential effects, while
effects of greater magnitude were overlooked (23–26). Equally,
variables with limited predictive utility in data-driven in-
vestigations may have reliable effects in hypothesis-driven
investigations, which in turn may provide mechanistic in-
sights that progress clinical science (27). Data- and
hypothesis-driven approaches are mutually informative, and
both are necessary to develop, refine, and test theories of
cognitive variation.

To bridge the gap between current hypothesis-driven
research and clinical translation, it is critical to evaluate
logical Psychiatry. Published by Elsevier Inc. All rights reserved. 841
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momentary cognition in relation to a wide range of predictors.
The present work represents an initial step toward this end.
Specifically, we used data-driven methods to identify mean-
ingful predictors of momentary cognition. Our approach was
informed by complementary research traditions (data-driven,
high-dimensional; hypothesis-driven, longitudinal) that are
commonly used to characterize cognitive performance. Below,
we summarize strengths and limitations of these traditions to
motivate current aims and methods.

Data-Driven, High-Dimensional Studies of Cognitive
Performance

Data-driven, high-dimensional studies have principally exam-
ined cognitive performance in relation to biological (e.g., ge-
netic, neural) predictors. In genetics, results suggest that
polygenic predictors explain approximately 10% of the varia-
tion in cognition (28–30). Neuroimaging predictors may explain
as much as 80% of the variation in aspects of cognition (31),
although performance varies markedly across studies (10%–

70%) (32–35), and it is unclear how neuroimaging modality,
sample size, algorithm selection, and cognitive domain impact
results. Collectively, this work demonstrates that data-driven
methods have the potential to accurately predict cognitive
performance, but major gaps remain. First, relative to biolog-
ical predictors, self-report predictors are understudied and
represent an important frontier for investigation (36,37). Self-
report predictors are scalable, have applications for interven-
tion, and can enrich understanding of genetic and neural bio-
markers by suggesting behavioral mechanisms. Second, most
data-driven work has been cross-sectional (38), producing
group-level insights that may not apply to individuals (39,40)
and precluding studies of within-person fluctuations (41,42).
Finally, machine learning algorithms are frequently inscrutable
(43), complicating efforts to understand how model inputs
generate predictions.

Hypothesis-Driven, Longitudinal Studies of
Momentary Cognition

Recent innovations in digital technology support cognitive and
behavioral data collection remotely, reliably, and at scale
(18,44), enabling intensive longitudinal investigation of
momentary cognition. Ecological momentary assessment
(EMA) is a popular intensive longitudinal design in which par-
ticipants answer self-report questions about recent experi-
ences multiple times each day (45). In cognitive variations of
EMA, participants additionally complete brief cognitive tasks in
naturalistic environments (18). Routinely sampling cognitive
performance using EMA makes it possible to partition
between-person (interindividual) and within-person (intra-
individual) variation in momentary cognition (41). These dis-
tinctions are important; for example, sleep quality has been
linked to working memory performance between, but not
within, individuals (46). In the absence of data-driven cognitive
EMA research, studies have frequently examined different
predictors, making it difficult to compare results and increasing
the likelihood that available results reflect topics of interest to
researchers, rather than topics of central consequence to
cognitive performance.
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Study Aims and Approach

Combining the strengths of data-driven and intensive longi-
tudinal studies, we aimed to 1) accurately predict momentary
cognition in high-dimensional space and 2) identify meaningful
predictors thereof (Figure 1). To this end, we evaluated more
than 50 demographic (e.g., age), self-report (e.g., affect, stress,
context, arousal), and mobile (e.g., time of day, date, screen
size) features in relation to variation in momentary cognition.
Baseline and EMA features are defined in S1 in the
Supplement. Momentary cognition was parameterized with
respect to domain (effortful attention, visuospatial capacity)
and outcome metric (accuracy, reaction time [RT]) (Figure 2).
Although there are multiple statistical techniques that partition
interindividual and intraindividual variation in clustered (e.g.,
intensive longitudinal) data, these techniques are not
commonly applied in high-dimensional space, where re-
searchers often ignore clusters, represent clusters as cate-
gorical variables, or adopt a fully idiographic (one person, one
model) approach. To partition interindividual and intraindividual
variation in momentary cognition, we analyzed data using hi-
erarchical Bayesian modeling with horseshoe priors (47). Our
novel application of hierarchical Bayesian modeling flexibly
accommodated high-dimensional, clustered data; accepted
linear, nonlinear, and interaction terms; provided transparent
feature rankings; and yielded accessible, interpretable, cross-
validated estimates of performance (48).
METHODS AND MATERIALS

Participants

EMA data were collected from 122 adult participants recruited
through links placed on the front page of our digital research
platform, TestMyBrain.org (49). Participants older than 18
years were eligible to enroll if they did not report history of
head trauma, current substance use disorder, neurological
illness, major medical illness, or disability that would interfere
with study protocol. Consent was obtained electronically
before enrollment. Study procedures were approved by the
Mass General Brigham Institutional Review Board. Participant
characteristics are reported in Table 1.

Methods and Measures

Before EMA, participants provided information about de-
mographic characteristics and sleep habits and completed
virtual onboarding with task instructions, practice trials, and
corrective feedback. During EMA, participants received 30 text
messages (3 daily 3 10 days) prompting them to complete
questionnaires and cognitive assessments taking approxi-
mately 10 minutes. Each text corresponded to one EMA sitting,
and texts arrived at random times within fixed time windows.
More specifically, one text arrived within each of 3 daily win-
dows: morning (9:00 AM–12:30 PM), afternoon (1:15–4:45 PM),
and evening (5:30–9:00 PM). Time was measured in partici-
pants’ local time zones. On receipt, participants had 30 mi-
nutes to respond to texts by clicking embedded links. After 30
minutes, links expired. Questionnaires were identical within
and across sittings (same surveys presented in the same or-
der), whereas cognitive assessments were identical within
ugust 2023; 8:841–851 www.sobp.org/BPCNNI
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Figure 1. Schematic depicting data collection timeline and analytic plan. (A) Participants provided baseline data, including demographics and self-reported
sleep habits, before ecological momentary assessment (EMA). During EMA, they received 30 texts (3 per day 3 10 days) prompting them to complete brief
self-report questionnaires and cognitive assessments on their personal smartphone devices. (B) i. Datawere analyzedwithin 5-fold cross-validation. Modelswere
evaluated based on their ability to predict new observations from individuals used in training (stratified cross-validation) as well as new observations from in-
dividuals who were not used in training (grouped cross-validation). ii. Models were built in stages (unconditional/participant mean model vs. conditional) to
partition sources of interindividual and intraindividual variance. Unconditionalmodels included participant-level (random) intercepts, which indexed interindividual
differences in mean cognition. Conditional models additionally included baseline and noncognitive EMA variables. iii. Model performance was evaluated with
respect to the proportion of variance explained in new data, reflecting the strength of the association between predicted and observed values. iv. Variables that
contributed most strongly to prediction of momentary cognition were identified by ranking coefficients, with consideration for uncertainty around estimates.
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sittings (across participants) and randomized across sittings
(different test versions presented in different orders).

Ecological Momentary Assessment. Items were adapt-
ed from existing instruments to measure constructs of po-
tential relevance to cognition, including positive and negative
affect, stress, social functioning, context, and attention
(50–55). Items, responses, variable abbreviations, and distri-
butions are provided in S1 in the Supplement.

Cognitive EMA. EMA items were analyzed in relation to RT
and accuracy on cognitive EMA tasks measuring effortful/
sustained attention (Choice Reaction Time, Gradual Onset
Continuous Performance Test) (1,56–58) and visuospatial
memory capacity (Multiple Object Tracking, Digit-Symbol
Matching) (59–63). These distinctions follow established tax-
onomies (60). Cognitive descriptive statistics are provided in
Table 2, task descriptions are provided in S2.1 in the
Supplement, and multilevel reliability is reported in S2.2 in the
Supplement (19,64). Between-person reliability, reflecting the
proportion of variance in scores attributable to differences
between individuals, equaled or exceeded 0.94. Within-person
reliability, reflecting the proportion of systematic variance
across (relative to within) measurement occasions, ranged
from 0.27 to 0.75 (19). Within-person reliability estimates are
consistent with prior research (19,65,66) and isolate variance
that may be explained by time-varying predictors.

Statistical Analysis

Data cleaning maximized the signal-to-noise ratio by excluding
observations that were strongly suggestive of careless
responding. Details are provided in S2.3 in the Supplement. To
be included in the analysis sample, participants were required
Biological Psychiatry: Cognitive Neuroscience and Ne
to provide clean data in $20 of 30 EMA sittings. Participants
included in analyses (n = 122) did not differ from the full sample
(N = 202 participants who provided demographic information)
with respect to age, gender, race, ethnicity, or educational
attainment (ps . .05).

Analyses were performed in R using tidyverse and brms
(48,67,68). Hierarchical modeling accounts for shared variance
in nested data (69), and Bayesian modeling incorporates
background information in the form of prior distributions to
inform estimation (70). These approaches were well suited to
the present study because they enabled feature evaluation and
ranking within a multilevel framework.

Preprocessing included grand mean centering, scaling, and
correlation-based feature reduction. During feature reduction, 3
highly correlated social functioning variables (rs . 0.9) were
averaged to create a composite. Models were implemented
separately for cognitive outcomes and built in stages (uncondi-
tional, conditional) to partition interindividual and intraindividual
variance in momentary cognition. Unconditional models
included participant-level random intercepts indexing interindi-
vidual differences in momentary cognition. We refer to uncon-
ditionalmodels as participantmeanmodels. Conditionalmodels
additionally included linear (seeS1 in theSupplement), quadratic
(age), cyclic (sine, cosine of time) (71), and 2-way interaction
(linear age 3 cyclic time) fixed effects. Change in variance
explained (DR2) between participant mean and conditional
models reflected the extent to which fixed effects improved
estimates of momentary cognition, principally by explaining
variation in intraindividual cognitive fluctuations.Model formulas
and syntax are provided in S2.4 and S2.5 in the Supplement.

Performance was evaluated using 5-fold cross-validation (CV)
with stratified and grouped partitions. In stratified CV, partici-
pants contribute data to all folds, and R2 reflects generalizability
to new observations fromexisting individuals included in training.
uroimaging August 2023; 8:841–851 www.sobp.org/BPCNNI 843
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Figure 2. (A) Cognition was evaluated in relation to domain (effortful attention, visuospatial capacity) and metric (accuracy, reaction time [RT]) using 4 tasks
and associated performance indices. Task [performance index] = gradual onset continuous performance test [dprime], multiple object tracking [percent
correct], digit-symbol matching [median RT], and choice RT [median RT]. Tasks are depicted in panel (A), and task instructions are elaborated in Methods and
Materials. (B) Between-person correlations of average momentary cognition and (C) average within-person correlations of momentary cognition. Between-
person correlations were stronger than within-person correlations. Negative correlations between RT and accuracy reflect the fact that faster responding
was associated with greater accuracy. corr, correlation; CRT, choice reaction time; DS, digit-symbol matching; GCPT, gradual onset continuous performance
test; MOT, multiple object tracking; RTc, median reaction time on correct responses.
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In grouped CV, approximately 20% of participants contribute
data to a given fold, and R2 reflects generalizability to new ob-
servations from new individuals excluded from training. Grouped
prediction was implemented using brms defaults.

Conditional models partitioned interindividual and intra-
individual variation in momentary cognition. Post hoc analyses
further disaggregated interindividual and intraindividual in-
fluences on momentary cognition. First, we separated time-
varying, self-report variables1 into interindividual and intra-
individual predictors. Interindividual predictors were computed
by centering and scaling person-level mean scores. Intra-
individual predictors were computed by centering and scaling
deviations from participant means. Next, we used hierarchical
linear modeling to evaluate associations between dis-
aggregated (interindividual and intraindividual) predictors and
momentary cognition. Regression coefficients for interindi-
vidual predictors reflect between-person associations, and
regression coefficients for intraindividual predictors reflect
1We specify time-varying because baseline variables (e.g., age) do
not index intraindividual variation, and we specify self-report
because time-varying, experimentally determined predictors
(e.g., test position within battery) do not index meaningful
interindividual variation.

844 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
within-person associations (72). A random intercept was esti-
mated for each participant, and feature space was restricted to
variables that were significant in data-driven analyses. For
DS_medianRTc, alertness and context were rescaled between
0 and 1 (“rs”) and combined to reduce multicollinearity:

alert composite¼ðPA alert rs2 alert sleepiness rsÞ=2

context composite¼ðcontext diff concentrating rs

1 context going on rsÞ�2

RESULTS

Proportion of Variance Explained

Model performance was evaluated within stratified and
grouped CV (Figure 1B). In stratified CV, performance was
evaluated on new observations, allowing us to generalize re-
sults to new data from an existing sample. In grouped CV,
performance was evaluated in new individuals, allowing us to
generalize results to new data from a new sample. Accurate
performance (R2 . 70%) was obtained in stratified, conditional
models predicting RT from baseline and EMA variables.
Stratified CV consistently explained more variance than
ugust 2023; 8:841–851 www.sobp.org/BPCNNI
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Table 1. Sample Characteristics

Characteristic n (%) or Mean (SD) [Range]

Education

College 36 (29.5%)

Graduate school 19 (15.6%)

High school 13 (10.7%)

Masters 21 (17.2%)

Some college 25 (20.5%)

Technical school 8 (6.6%)

Primary Language

English 114 (93.4%)

Not English 8 (6.6%)

Race

Asian 8 (6.6%)

Black or African American 5 (4.1%)

Multiracial 4 (3.3%)

White 94 (77%)

Not sure 7 (5.7%)

Rather not say 4 (3.3%)

Gender

Female 94 (77%)

Male 22 (18%)

Nonbinary 6 (4.9%)

Ethnicity

Hispanic 12 (9.8%)

Not Hispanic 107 (87.7%)

Not sure 2 (1.6%)

Rather not say 1 (0.8%)

Age, Years 36.62 (14.29) [18–70]

EMAs Completed 25.48 (2.18) [20–30]

EMA, ecological momentary assessment.
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grouped CV, as expected given that grouped models could not
use participant-specific estimates of average cognition (i.e.,
random intercepts) during prediction. Conditional models
consistently explained more variance than participant mean
models (see S2.6 in the Supplement), suggesting that intra-
individual cognitive fluctuations were predicted, in part, by
model fixed effects.

In stratified CV, conditional models predicting RT from
baseline and EMA variables explained 73% of the variance in
Table 2. Cognitive Descriptive Statistics and ICCs

Variable Mean (SD) Range ICC
No. of

Participants (T)

CRT RT 709.36 (120.56) 491–1312.05 0.68 122 (3059)

DS RT 810.56 (148.87) 545.15–1621.5 0.71 122 (3062)

GCPT dprime 2.85 (0.74) 0.04–4.23 0.35 122 (3050)

MOT Percent
Correct

0.74 (0.11) 0.37–1 0.55 121 (2955)

ICCs were estimated in unconditional models using all available
data and reflect the proportion of variance attributable to
interindividual differences.

CRT, choice reaction time; DS, digit symbol; GCPT, gradual onset
continuous performance test; ICC, intraclass correlation coefficient;
MOT, multiple object tracking; RT, reaction time; T, number of
ecological momentary assessments completed.

Biological Psychiatry: Cognitive Neuroscience and Ne
visuospatial capacity and 71% of the variance in effortful
attention, while conditional models predicting accuracy from
baseline and EMA variables explained 55% of the variance in
visuospatial capacity and 35% of the variance in effortful
attention (Table 3 and Figure 3). Stratified participant mean
models explained slightly less variation in RT and accuracy
(DR2 = 2.5%–5.2%). In grouped CV, conditional models pre-
dicting RT from baseline and EMA data explained 42.3% of
the variance in visuospatial capacity and 26.8% of the vari-
ance in effortful attention, while conditional models predicting
accuracy from baseline and EMA data explained 14.2% of the
variance in visuospatial capacity and 3.3% of the variance in
effortful attention. Grouped participant mean models
explained negligible variance in RT and accuracy (R2 = 0.7%–

2.3%).

Meaningful Predictors of Variance

Having established the predictive utility conditional model
predictors, we next examined the relative magnitude of their
effects. Effects are interpretable at mean levels of covariates,
and horseshoe priors shrunk coefficients toward zero,
reducing the impact of multicollinearity, guarding against
overfitting (73), and supporting feature selection. Figure 4 vi-
sualizes significant and marginal effects (for which 95% and
80%–90% credible intervals did not include zero, respectively),
and S2.7 in the Supplement provides model statistics. Statis-
tics were estimated using all available data, although they were
highly similar in each fold of stratified (S2.8 in the Supplement)
and grouped (S2.9 in the Supplement) prediction. We focus our
discussion on significant effects, but illustrate marginal effects
to support future hypothesis generation.

Reaction Time. Across cognitive domains, RT was posi-
tively related to age and self-reported sleepiness, with slower
RTs among older individuals and among individuals reporting
greater sleepiness. In contrast, RT was negatively related to
test position and study days, with faster RTs in tests that
occurred later in the assessment battery and later in the study.
Time of day was consistently related to momentary cognition,
but the nature of circadian effects varied. For example, on
effortful attention measures, participants had greater accuracy
in the morning relative to the evening, yet were faster in the
evening relative to the morning (Figure 5). Domain-specific
effects for RT were also observed. Quadratic effects of age
were observed for effortful attention, indicating that associa-
tions between age and RT strengthened as age increased.
Alertness was negatively associated with visuospatial capac-
ity, indicating that RT slowed as alertness decreased. Self-
reported contextual distractions significantly predicted slower
RTs in visuospatial capacity tasks, while self-reported atten-
tion significantly predicted slower RTs in effortful attention
tasks. Higher ratings of effort were associated with faster RTs
for visuospatial capacity but not effortful attention.

Accuracy. Across cognitive domains, less accurate perfor-
mance was observed when tests were interrupted and/or
completed in busy, noisy environments. Self-reported affect and
stress were associated with visuospatial capacity and effortful
attention, but effects were in opposite directions: Higher positive
uroimaging August 2023; 8:841–851 www.sobp.org/BPCNNI 845

http://www.sobp.org/BPCNNI


Table 3. Model Performance (RMSE and R2) Predicting RT and Accuracy in Tasks Assessing Visuospatial Capacity and
Effortful Attention

CV Split
Outcome
Metric

Cognitive
Domain Model Stage Cognitive Variable RMSE (L, U) R2 (L, U) DR2

Stratified RT Visuospatial
capacity

Conditional DS median RTc 0.53 (0.46, 0.56) 72.51 (68.69, 77.53) 3.71

Participant
mean

DS median RTc 0.56 (0.50, 0.58) 68.80 (65.56, 72.58)

Effortful attention Conditional CRT median RTc 0.54 (0.52, 0.57) 70.51 (66.31, 73.67) 5.20

Participant
mean

CRT median RTc 0.59 (0.57, 0.60) 65.31 (61.89, 67.74)

Accuracy Visuospatial
capacity

Conditional MOT percent correct 0.67 (0.65, 0.69) 55.24 (50.76, 58.57) 2.53

Participant
mean

MOT percent correct 0.69 (0.68, 0.71) 52.71 (46.83, 56.41)

Effortful attention Conditional GCPT dprime 0.81 (0.77, 0.84) 35.00 (30.95, 38.2) 3.72

Participant
mean

GCPT dprime 0.83 (0.80, 0.87) 31.28 (28.86, 33.67)

Grouped RT Visuospatial
capacity

Conditional DS median RTc 0.76 (0.61, 0.84) 42.25 (33.54, 49.59) 39.94

Participant
mean

DS median RTc 1.00 (0.82, 1.13) 2.31 (0.44, 9.56)

Effortful attention Conditional CRT medianRTc 0.86 (0.76, 0.97) 26.84 (16.92, 40.05) 25.71

Participant
mean

CRT median RTc 1.00 (0.89, 1.14) 1.13 (0.09, 4.96)

Accuracy Visuospatial
capacity

Conditional MOT percent correct 0.95 (0.84, 1.01) 14.18 (1.45, 20.04) 12.60

Participant
mean

MOT percent correct 1.00 (0.92, 1.10) 1.58 (0.08, 6.84)

Effortful attention Conditional GCPT dprime 0.99 (0.93, 1.05) 3.32 (0.88, 6.01) 2.65

Participant
mean

GCPT dprime 1.01 (0.94, 1.08) 0.67 (0.01, 1.99)

Stratified splits estimated model performance on new observations, and grouped splits estimated model performance on new observations in
new individuals. Unconditional models included participant-level (random) intercepts, and conditional models additionally included baseline and
ecological momentary assessment variables. R2 is the proportion of variance explained and is expressed as a percentage, and DR2 is the
change in R2 between conditional and unconditional models, also expressed as a percentage.

CRT, choice reaction time; CV, cross validation; DS, digit symbol; GCPT, gradual onset continuous performance test; L, lower bound of CV
estimates; MOT, multiple object tracking; RMSE, root mean square error; RT, reaction time; RTc, median reaction time on correct responses; U,
upper bound of CV estimates.

Accurate Prediction of Momentary Cognition
Biological
Psychiatry:
CNNI
affect (determination) was associated with better effortful
attention, whereas higher stress (following an argument) was
associated with improved visuospatial capacity. Domain-
specific effects for accuracy were also observed. Study days
were positively associated with visuospatial capacity but not
effortful attention, indicating improved visuospatial capacity
later in the study. Age was negatively associated with visuo-
spatial capacity but not effortful attention, indicating poorer vi-
suospatial capacity among older adults. Finally, time of day was
associated with effortful attention but not visuospatial capacity,
indicating improved effortful attention in the morning compared
with afternoon (Figure 5).

Post Hoc Analyses. In data-driven analyses, predictors
were grand mean centered to balance research goals (ac-
curate prediction, feature selection) and computational
complexity. Under such conditions, regression coefficients
conflate interindividual and intraindividual effects (72). Post
hoc analysis demonstrated that 1) intraindividual fluctuations
in alertness, attention, context, affect, and stress predicted
RT and accuracy and 2) interindividual differences in
alertness predicted visuospatial RT (see S2.10 in the
Supplement). Whereas chronically elevated alertness
predicted slower visuospatial RT (interindividual effect),
846 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
within-person elevations in alertness predicted faster visuo-
spatial RT (intraindividual effect).
DISCUSSION

Data-Driven, High-Dimensional Methods Supported
Accurate Prediction of Momentary Cognition

The present study used hierarchical Bayesian modeling with
horseshoe priors to predict momentary cognition across do-
mains (effortful attention, visuospatial capacity) and outcomes
(accuracy, RT). Conditional models predicting new observa-
tions from existing individuals accounted for more than 70% of
the variance in RT and 35% to 55% of the variance in accu-
racy. DR2 between conditional and participant mean models
was small but nonetheless significant, suggesting that partic-
ipant mean performance is a strong predictor of momentary
cognition, and maximizing prediction of momentary cognition
requires modeling between- and within-person predictors. In
conditional RT models, momentary cognition was predicted by
age, time of day, sleepiness/arousal, practice effects, and
context. In conditional accuracy models, momentary cognition
was predicted by interruptions, context, and affect. When
predicting new observations from new individuals, models
ugust 2023; 8:841–851 www.sobp.org/BPCNNI
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Accuracy
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Figure 3. Variance explained in momentary
cognition across models (conditional vs. participant
mean) and cross-validation splits (stratified vs.
grouped). Stratified splits were used to estimate
model performance on new observations, while
grouped splits were used to estimate model perfor-
mance on new observations in new individuals.
Participant mean models included participant-level
(random) intercepts, while conditional models addi-
tionally included baseline and noncognitive ecolog-
ical momentary assessment variables. x-axis: (1)
conditional model, new observations; (2) conditional
model, new individuals; (3) participant mean model,
new observations; (4) participant mean model, new
individuals. When applied to new observations,
conditional models accounted for more than 70% of
the variation in reaction time (RT) and 35%–55% of
the variation in accuracy. DR2 between conditional
and participant mean models was comparatively
small (w5%) but nonetheless significant, suggesting
that participant mean performance is a strong pre-
dictor of momentary cognition and maximizing pre-
diction of momentary cognition requires modeling

between-person and within-person predictors. Shades of blue illustrate variability among folds. Error bars reflect 95% confidence intervals around R2

within folds. CRT, choice reaction time; DS, digit-symbol matching; GCPT, gradual onset continuous performance test; MOT, multiple object tracking; RTc,
median reaction time on correct responses.
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could not use information about between-person differences in
average cognition and performed considerably worse.

Environmental, Circadian, and Internal State
Variables Constituted Shared Sources of Cognitive
Variation

Momentary cognition was slower and less accurate when as-
sessments were completed in environments perceived to be
noisy or busy, when participants reported difficulty concen-
trating before assessment, and when participants reported that
one or more interruptions occurred during assessment. RT was
Reaction time (RT)        Accuracy        Effortful attention        Visuospatial capacit

Optimal performance associated with lower (   ) vs. higher (   ) scores( ) ( )
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less impacted by interruptions than accuracy, plausibly
because RT (operationalized within sessions with respect to
median) was robust to trial-level outliers. Results suggest that
failure to measure and appropriately control for contextual and
environmental variables may confound clinical studies of
momentary cognition, particularly insofar as environmental
variables (such as noise) and sociodemographic characteris-
tics are themselves correlated (74). An alternative possibility is
that difficulty concentrating disposes participants to notice
environmental noises and distractions. Collecting subjective
(self-report) and objective (decibel level) indices of noise (75)
will support future research aimed at clarifying how
y

Figure 4. Strong predictors, for which 80%
credible intervals did not include zero, sorted by
cognitive outcome and coefficient magnitude. Sig-
nificant predictors, for which 95% credible intervals
did not include zero, are identified by a sea-green
dot. In addition to linear and quadratic effects of
age, time-varying environmental (e.g., noise, in-
terruptions), circadian (e.g., time of day, arousal),
and affective (e.g., determination) variables were
associated with momentary cognition across do-
mains (effortful attention, visuospatial capacity) and
outcome metrics (reaction time, accuracy). CRT,
choice reaction time; DS, digit-symbol matching;
GCPT, gradual onset continuous performance test;
MOT, multiple object tracking; RTc, median reaction
time on correct responses; Sig., significant; Std.
beta, standardized b.
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Optimal performance associated with lower (   ) vs. higher (   ) scores

Reaction time (RT)        Accuracy        Effortful attention        Visuospatial capacity

A

C

B
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Figure 5. (A–D) Age (in years), time of day (in
hours), and age 3 time of day interaction effects.
Black dots represent fit curves. Thin lines represent
draws from the expectation of the posterior predic-
tive distribution, illustrating uncertainty around fit
curves. Age is plotted at the sample mean 6 1 SD.
Time of day effects suggest a possible speed-
accuracy tradeoff, with accurate but slow effortful
attention in the morning and error-prone but fast
effortful attention in the evening (A, C). Circadian
slowing of effortful attention was less pronounced
among older compared with younger adults (A), and
time of day effects were less pronounced for vi-
suospatial capacity compared with effortful atten-
tion. CRT, choice reaction time; DS, digit-symbol
matching; GCPT, gradual onset continuous perfor-
mance test; MOT, multiple object tracking; RTc,
median reaction time on correct responses.
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distractions impact cognition in daily life. Additionally, indices
of noise may be used during remote neuropsychological
assessment to statistically control for distractions.

Circadian factors, including time of day and self-reported
arousal (alertness, sleepiness), also emerged as strong pre-
dictors of momentary cognition. Time of day effects suggest a
possible speed-accuracy tradeoff, with accurate but slow
effortful attention in the morning and error-prone but fast
effortful attention in the evening (Figure 5A, C). Circadian
slowing of effortful attention was less pronounced among older
compared with younger adults, and time of day effects were less
pronounced for visuospatial capacity compared with effortful
attention. The latter is consistent with evidence that sleep im-
pacts effortful attention interindividually and intraindividually
(76,77), but has mixed results in other cognitive domains
(78–80). Effortful attention and visuospatial capacity were faster
and more accurate when participants reported high alertness
and low sleepiness. Effects were driven by intraindividual fluc-
tuations rather than interindividual differences, although both
intraindividual and interindividual effects were observed for vi-
suospatial capacity. Whereas elevations in alertness relative to
one’s own mean predicted faster responses on tests of visuo-
spatial capacity, elevations in alertness relative to means of
others predicted slower responses (see S2.10 in the
Supplement). Processing speed impairments are well docu-
mented in clinical disorders characterized by chronic alertness
(e.g., posttraumatic stress disorder) (81). The present study
extends these findings to a nonclinical sample and further
suggests that intraindividual associations are reversed.

Intraindividual fluctuations in affect and stress predicted
momentary cognition, although these effects were weaker than
environmental and circadian effects. Aspects of positive affect
(determination) predicted improvements in effortful attention,
and aspects of negative affect (feeling like everything is an
effort) predicted faster responses on tests of visuospatial ca-
pacity. The latter may reflect associations between perceived
848 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
and actual effort in nonclinical populations. In addition to af-
fective predictors, interpersonal stress following an argument
was associated with improved visuospatial capacity. The
available literature on intraindividual associations between
affect, stress, and cognition is small and mixed. Neubauer
et al. (82) observed that negative affect predicted momentary
working memory impairment in children, whereas von Stumm
(83) failed to observe associations between affect and
momentary cognition. Hyun et al. (84) observed associations
between stress and cognition, similar to the present study, but
they used different constructs (anticipatory stress, working
memory) and their effects were in the opposite direction (stress
predicted cognitive errors). Weak, inconsistent, and variable
results may be expected if intraindividual associations are true
only of some people, moderated by interindividual variables
such as stress sensitivity (82), or susceptible to methodolog-
ical differences. The impact of methodological differences is
appreciated interindividually; for example, the direction and
magnitude of associations between stress and cognition
commonly vary as a function of stress intensity, origin, task,
and processing demands (85). Measuring and elucidating the
impact of such variables on intraindividual associations rep-
resents an important direction for research.
Methodological and Clinical Implications

Research utilizing ambulatory assessment to measure
momentary cognition—at scale, in naturalistic environments,
and within intensive longitudinal designs—is in its infancy. Our
approach combined the strengths of data-driven and intensive
longitudinal studies to identify meaningful predictors of
momentary cognition, providing foundational insights in an
emerging research space.

With respect to research planning and design, results pro-
vide robust estimates of effect size to support power compu-
tation across data- and hypothesis-driven studies. Whereas
ugust 2023; 8:841–851 www.sobp.org/BPCNNI
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future data-driven studies may leverage information about the
relative magnitude of within- versus between-person fluctua-
tions in momentary cognition, future hypothesis-driven studies
may use information about the relative strength of individual
within- and between-person predictors. Questions remain
regarding the extent to which passively acquired, quantitatively
assessed variables (ambient noise, temperature, location,
physical activity) further improve prediction.

With respect to intervention, the data-driven, multilevel
approach that we describe readily extends to new populations.
For example, the same model could be applied to diverse,
clinical populations to test the generalizability of results. Future
research establishing generalizability is necessary before clin-
ical translation. Within the present sample, results suggest 4
promising applications for tailoring interventions. First, results
may guide neuropsychologists by identifying factors that impact
cognitive performance under remote assessment conditions.
Second, they may aid in the development of cognitive in-
terventions by identifying modifiable treatment targets—for
example, determination, which predicted momentary cogni-
tion in the present study and (bearing replication in clinical
samples) may be targeted in therapy using empirically sup-
ported protocols (86). Third, they may support delivery of psy-
chosocial interventions at moments when patients (e.g., with
cognitive impairment) are most likely receptive. Finally, to the
extent that RT remains predictable over long periods of time
(e.g., years), results suggest avenues for ascertaining in-
dividuals who deviate from expected trajectories, improving risk
monitoring in aging (14–16). Research examining intraindividual
cognitive variability in relation to clinical outcomes has
commonly operationalized variability across cognitive domains
within a single time point (87,88), whereas we operationalized
variability within a single cognitive domain across time points.
These operational definitions measure change on different time
scales, presuppose different study designs (single session vs.
intensive longitudinal), and are suited to different applications
(prediction vs. monitoring). It remains unclear which cognitive
outcomes will be sensitive to clinical decline in the context of
intensive longitudinal monitoring.
Limitations

To our knowledge, this work represents the first data-driven,
high-dimensional investigation of momentary cognition.
There are, however, several limitations. Participants were
predominantly female and White/non-Hispanic, limiting
generalizability. The sample was not clinically ascertained, and
it is unclear how results may change in the context of psy-
chopathology or cognitive decline. Our study protocol lasted
10 days, limiting insights into intraindividual stability. Longitu-
dinal burst designs (16,89) are necessary to demonstrate that
RT is stable within individuals over extended periods, with
potential implications for risk monitoring in aging. Finally, we
lacked enough time points within participants to build indi-
vidualized models of momentary cognition. We observed that
contextual, circadian, and internal state variables constituted
shared sources of cognitive variation. However, there may be
interindividual differences in magnitude, strength, shape, and
moderators of intraindividual associations. To clarify complex
sources of cognitive variation, future studies may collect longer
Biological Psychiatry: Cognitive Neuroscience and Ne
time series for idiographic modeling and/or leverage more
flexible forms of predictive modeling with explainable artificial
intelligence. Notably, these approaches compromise simulta-
neous estimation of interindividual and intraindividual effects.

Conclusions

Leveraging innovations in digital technology and statistical
computing, we performed a data-driven, high-dimensional anal-
ysis of interindividual and intraindividual predictors ofmomentary
cognition. RT was highly predictable from intraindividual, age,
and circadian variables. Accuracy was predicted by similar vari-
ables, but substantial variation remains to be explained. To this
end, passive sensing and idiographic modeling represent prom-
ising future directions.More immediately, results from thepresent
study may support the identification of optimal windows for
psychosocial interventions, enhance clinical understanding un-
der remote neuropsychological assessment conditions, and
inform the development of cognitive interventions by identifying
highly impactful, potentially modifiable treatment targets.
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