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Abstract

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition resulting from threatening or 

horrifying events. We hypothesized that circadian rhythm changes, measured by a wrist-worn 

research watch are predictive of post-trauma outcomes. Approach: 1618 post-trauma patients were 

enrolled after admission to emergency departments (ED). Three standardized questionnaires were 

administered at week eight to measure post-trauma outcomes related to PTSD, sleep disturbance, 

and pain interference with daily life. Pulse activity and movement data were captured from a 

research watch for eight weeks. Standard and novel movement and cardiovascular metrics that 

reflect circadian rhythms were derived using this data. These features were used to train different 

classifiers to predict the three outcomes derived from week-eight surveys. Clinical surveys 

administered at ED were also used as features in the baseline models. Results: The highest cross

validated performance of research watch-based features was achieved for classifying participants 

with pain interference by a logistic regression model, with an area under the receiver operating 

characteristic curve (AUC) of 0.70. The ED survey-based model achieved an AUC of 0.77, and 

the fusion of research watch and ED survey metrics improved the AUC to 0.79. Significance: 

This work represents the first attempt to predict and classify post-trauma symptoms from passive 

wearable data using machine learning approaches that leverage the circadian desynchrony in a 

potential PTSD population.

Keywords

Actigraphy; Circadian rhythms; mHealth; Photoplethysmography; Post-traumatic stress disorder; 
Wearables

I. INTRODUCTION

POST-traumatic stress disorder (PTSD) is a psychiatric condition that can develop after 

exposure to threatening or horrifying events. Significant symptoms consistent with the 

eventual development of PTSD may manifest within days, weeks or months, and more 

rarely, a year or two after the traumatic event [1]. Symptoms may include persistent 

intrusive memories of trauma, sleep disturbances, avoidance of stimuli related to the 

trauma, hyperarousal, and negative changes in mood and cognition. PTSD can result from 

events such as violent personal assaults, natural or human-caused disasters, motor vehicle 

collisions, combat, and other forms of violence [2]. It has been shown that patients with 

PTSD experience sleep disturbance, particularly in terms of nightmares and panicked 

awakenings from sleep [3]. In addition, various studies suggest a significant comorbidity 

of pain with PTSD [4]. Many models have been developed to explain this co-occurrence 

of pain and PTSD, including the mutual maintenance model [5]. According to this model, 

pain acts as a reminder of the traumatic event and maintains PTSD symptoms. Then, 

these symptoms reduce the ability to cope with pain effectively. Although approximately 

90% of all U.S. adults report exposure to at least one traumatic event in their lifetime, 

most do not develop PTSD [6]. It has been shown in previous studies that the majority 

of individuals experience PTSD onset within the first three months after trauma, while 

“delayed expression” PTSD (after six months) was observed on average for 15.3% of the 

cases [7].
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Accurate prediction of PTSD in the early aftermath of trauma would enable early 

preventive interventions [8]. Rothbaum et al. [9] showed that trauma survivors receiving 

an early modified prolonged exposure intervention reported significantly less PTSD severity 

compared to the assessment group. It has also been shown in a preliminary study that 

administering an early single high-dose hydrocortisone could reduce the risk of PTSD 

development [10]. Unfortunately, PTSD prediction using standard survey data remains a 

challenge, since potential risk factors (such as age, gender, previous trauma) did not show 

a strong association with PTSD [10, 11, 12]. In a previous study, Schultebraucks et al. [13] 

combined biomarker data with clinical assessments from the emergency department (ED) 

to build a cross-validated prediction algorithm. By fusing these two modalities, the model’s 

AUC for classifying participants with non-remitting PTSD symptoms from participants with 

resilient trajectories was 0.83 on a validation dataset. They also tested the use of electronic 

medical records alone and achieved an AUC of 0.72, which outperformed the baseline 

classifier (AUC=0.62). In another work, video and audio-based features were used with a 

deep learning classifier and achieved an AUC of 0.90 for predicting PTSD one month after 

ED enrollment [14].

The exponential increase in consumer wearables, and in wearable technology generally, 

has created an exciting opportunity to predict adverse mental health outcomes using wrist

wearable data [15, 16]. Two key outputs of wrist-wearable data are heart rate variability 

(HRV) and actigraphic data. Individual differences in a various time- and frequency-domain 

HRV measures have been found to predict a range of mental and physical health outcomes, 

including depression, anxiety, and poorer cardiovascular health [17, 18]. On the other hand, 

individuals with established PTSD have been shown to have HRV profiles consistent with 

increased sympathetic nervous system activity during sleep [19, 20]. In a previous pilot 

study, by using a dataset of 23 subjects with current PTSD and 25 control subjects, 

the authors found that HRV features derived from time periods with the lowest heart 

rate in 24-hour periods classify PTSD with an AUC of 0.86 [21]. Actigraphy data can 

be used to estimate sleep disturbance using derived sleep/wake estimates and the rest/

activity patterns [22]. Many studies utilized actigraphy as an objective tool to characterize 

disturbances in sleep and circadian rhythm in PTSD [23, 24]. However, analyses were 

confined to identifying statistically significant differences in populations and cross-validated 

classification analysis was not performed.

In this study, the extent to which the PTSD outcome can be predicted from circadian rhythm 

changes was investigated, using longitudinal data passively collected from a research watch. 

A novel approach to distinguishing between people that will and will not develop PTSD 

after exposure to a trauma is presented. At its core, the method is based on a classification 

algorithm fed by a set of actigraphy-based features and HRV metrics.

Data were analyzed using cosinor-based rhythmometry method [25] to completely automate 

the detection of rest/activity periods without the need for subjective information such as 

sleeping diaries or time zone information in the setting of both complete and missing data 

(the latter resulting from non-compliance or dead batteries). HRV metrics were extracted 

together with actigraphy features to quantify rest and activity states and examined the effect 

of varying the duration of data used to predict PTSD outcome. In this study, we passively 
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collected longitudinal data from a research watch, assessed circadian rhythm changes, and 

trained a classifier to distinguish people that develop PTSD after exposure to trauma from 

those that do not develop PTSD.

II. METHODS

A. Participants and overview of data collection

The AURORA dataset, used in this work, consisted of individuals who present to 

participating emergency departments within 72 hours of a traumatic event. Traumatic events 

that qualified automatically for study enrollment were motor vehicle collision, physical 

assault, sexual assault, fall >10 feet, or mass casualty incidents. The patients ranged in 

age from 18 to 75 years [26]. Although the AURORA study’s aim is to collect data from 

5000 individuals, the data is being analyzed in a series of tranches (or ‘freezes’) to report 

results to the scientific community. This approach also allows future data to act as a truly 

independent test set. For the current study, we present the analysis of the first set of 

participants (N=1618) enrolled between July 31, 2017, and July 31, 2019. There were 2312 

subjects enrolled until July 31, 2019. Participants who were deceased, those who dropped, 

who were pregnant or incarcerated, or anyone for whom the medical data extraction form 

was not available were not included in the released analyzable cohort, making the final 

dataset size 1618 participants. These 1618 participants are referred to as ‘Freeze 2’ dataset. 

Demographics (age, sex, BMI, and employment status) of the participants are shown in 

Table I. The number of participants in the outcome classes depended on compliance to the 

outcome surveys (administered at week eight), research watch data, and the ED surveys as 

illustrated in Fig. 1 and described in detail in Section II-B.

The AURORA study protocol was ethically approved by the central Institutional Review 

Board (IRB #17–0703) at the University of North Carolina Chapel Hill. Participants were 

asked to wear a research watch (Verily Life Sciences, San Francisco) at least 21 hours a 

day for the eight-week period and at subsequent times that vary by the study participant, as 

shown in Fig. 2. This research watch collected accelerometry and the photoplethysmogram 

(PPG) data at 30 Hz for this period.

B. Patient class labels and survey tools

Three clinical surveys were administrated in the ED – the Peritraumatic Distress Inventory 

(PDI), PCL-5, and Michigan Critical Events Perception Scale (MCEPS) [27, 28], as shown 

in Fig. 3. The PCL-5 administered at the ED solicited information on symptoms 30 days 

prior to the traumatic event. The raw scores of these surveys were used as features to the 

models to determine if prediction of the outcomes is feasible without using the research 

watch data.

Three clinical surveys administered at the eighth week of the study were used to create the 

binary outcome classes. These outcomes could potentially be used to identify subjects who 

require intervention to prevent or reduce the severity of PTSD. Firstly, the PCL-5 survey 

scores were used to capture PTSD symptoms outlined by DSM-5 criteria [2]. The score 
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PCL-5=31 was used as the threshold, following the recommendation of the developers of the 

PCL-5 survey [29].

Secondly, since patients with PTSD report sleep disturbance, the PCL-5 questionnaire 

was combined with one item from Pittsburgh Sleep Quality Index Addendum (PSQIA

PanicSleep) in order to measure sleep anxiety and panic [23, 30, 31, 32]. The question 

and response categories were modified as follows to assess the difficulty of staying asleep: 

“In the ‘reference period’, how often did you awaken from sleep with severe anxiety or 
panic?’’ so that 0 = “never’’, 1 = “less than once a week’’, 2 = “1–2 nights a week’’, 3 
= “3–4 nights a week’’ and 4 = “every or nearly every night’’. The cut-off for the survey 

was selected in order to separate participants with severe sleep disturbance. In this outcome, 

participants with PSQIA-PanicSleep ≥ 3 and PCL-5 ≥ 31 were assigned to the first class 

while PSQIA-PanicSleep < 3 and PCL-5 < 31 were assigned to the second class. This 

outcome is referred to as PTSD-Sleep Panic/Anx. outcome.

It has been shown in previous studies that chronic pain could accompany PTSD [5]. For 

the third outcome, the PCL-5 survey was combined with PROMIS Pain Interference Short 

Form 4a (PROM-Pain4a) [33]. In this survey, the participant was asked to rate how much 

pain interfered with different areas of life on a 5-point scale (1 = “not at all,” 2 = “a 
little,” 3 = “some,” 4 = “a lot,” and 5 = “extremely.”). The same scoring rules as the 

PROMIS Pain Interference Short Form 4a scale was used; the response values were summed 

and converted to a T-score. The T-score rescales the raw score into a standardized score 

with a mean of 50 and a standard deviation of 10. A higher PROMIS T-score represents 

more of the concept being measured and the T-scores help in interpreting the PROMIS 

scores in a clinically meaningful way (More information about the T-scores could be 

found in www.healthmeasures.net). By using the PROMIS T-score guidelines, the cut-offs 

were selected for mild and severe pain interference following the guidelines for T-score 

interpretation. Participants with PROM-Pain4a ≥ 66.6 (corresponding to a raw score of 16) 

and PCL-5 ≥ 31 were assigned to first class while PROM-Pain4a < 55.6 (corresponding 

to a raw score of 8) and PCL-5 < 31 were assigned to second. This outcome is referred 

to as PTSD-Pain Int. outcome. Fig. 1 illustrates the number of participants in each class, 

determined by week eight outcome surveys.

C. Preprocessing of research watch data

1) Cardiac data preprocessing—The cardiac activity of each subject was captured 

from the photoplethysmogram (PPG) signal, a 30 Hz pulsatile waveform derived from the 

reflected light on the back of the wrist in contact with the sensor. The PPG was converted to 

a normal-to-normal (NN) sinus beat interval time series using the PhysioNet Cardiovascular 

Signal Toolbox, implemented in the MATLAB programming language [34, 35]. First, peak 

detection of each pulsatile beat was performed using a previously described method based 

on gradient thresholding [36]. The first difference of the times of each beat was used to form 

the inter-beat interval time series. Then, non-sinus intervals were detected and removed by 

measuring the relative change in the current inter-beat interval from the previous inter-beat 

interval. Intervals that changed by more than 20% were excluded. Inter-beat intervals outside 
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of the physiologically possible range were also removed. The NN beat interval time series is 

commonly thought to reflect autonomic influences on cardiac function [37].

2) Accelerometer data preprocessing—The accelerometer data was converted to 

actigraphy counts before the feature extraction step, using the Actigraphy Toolbox which 

was implemented in the MATLAB programming language [38]. Borazio et al. describe the 

conversion of the raw 3D accelerometer data to activity counts [39]. Activity counts are the 

output format of most commercial actigraphy devices; data are summarized over 30-second 

epochs or time intervals. This conversion reduces required the memory for storing data and 

eliminates artifacts and noise. Z-axis actigraphy data were bandpass filtered 0.25–11 Hz to 

eliminate extremely slow or fast movements [22]. The maximum values inside 1-second 

windows were summed for each 30-second epoch of data. These summations were scaled 

to obtain activity counts for each epoch [40]. Actigraphy data are commonly represented as 

a “double plot”, which shows activity levels (measured via accelerometry in this case). Fig. 

4 illustrates this for one participant using eight weeks of actigraphy data. Each column is 

created by stacking two consecutive days of data. The first column shows activity levels on 

days 1–2, the second column shows days 2–3, and so on. Darker colors indicate lower levels 

of activity.

3) Cosinor-based rest and activity region identification—Single-component 

cosinor models were used to detect 24-hour rest and activity regions without any time-zone 

or sleep diary information [25]. Actigraphy data of each participant were split into 48-hour 

windows with an overlap of 24-hours. The cosinor model with the following form was then 

fit to the data

Y t = M + Kcos 2πt
τ + φ (1)

where M is known as the mesor, K is the amplitude, and φ is the phase of the circadian 

rhythm. By identifying the times at which the cosine fit crossed the mesor baseline, the start 

and end of rest and active segments of the day were determined. Each of these segments 

were 12-hour length.

D. Feature extraction from research watch data

After preprocessing, the actigraphy signal in each 30-second epoch, together with the 

NN interval time series of each participant, was used for feature extraction. Table II 

describes the features extracted from these preprocessed signals. Features derived from 

actigraphy included Interdaily Stability (IS), Intradaily Variability (IV), the mean and 

standard deviation of movement in the detected rest and activity regions, and cosinor

based rhythmometry metrics (Mesor, Amplitude, Phase) [25]. IS quantifies invariability 

between days while IV quantifies within 24-hour day fragmentation [41]. Cosinor-based 

rhythmometry metrics can provide information about the participants’ circadian rest-activity 

cycle. IS and IV were extracted from rest and activity regions by concatenating the days 

in the window, as indicated by the subscripts. CRS, RSI, and cosinor-based rhythmometry 

metrics were extracted from each day within the window and then the mean and standard 
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deviation of the metric were calculated. Similarly, for MV metrics, the mean and standard 

deviation of 12-hour rest and activity regions across the window were extracted.

The HRV feature set was derived using PhysioNet Cardiovascular Signal Toolbox and 

included time domain, frequency domain and entropy metrics [34]. More details about the 

HRV features used can be found in Table II. All HRV metrics were calculated in 5-minute 

segments with a 30-second overlap using the toolbox. Then 5-minute segments from the rest 

regions, detected by the cosinor method were selected in order to obtain the segments with 

the fewest movement artifacts and highest signal quality. The mean and standard deviation 

across the windows were calculated and used as features. Feature extraction was performed 

on a virtual computer in AWS, (48 vCPUs, 3.6 GHz, 96 GiB memory) and it took about 

three days for processing monthly data (~700 participant’s data on average).

E. Data organization for model training

As the first step in the pipeline, the data were adjusted by randomly undersampling the 

majority class in order to address the problem of class imbalance. This imbalance can 

be seen for PTSD-Sleep Panic/Anx. outcome, where the number of participants was 153 

for the first class (PanicSleep ≥ 3 and PCL-5week-8 ≥ 31) and was 613 for the second 

class (PSQIA-PanicSleep < 3 and PCL-5week-8 < 31). Specifically, all participants from the 

minority class were used, and the same number of participants from majority class were 

randomly selected to obtain balanced classes. Undersampling of majority class subjects 

was repeated in an external cross-validation fold, where n1 was defined as the number 

of majority class participants and n2 was the number of minority class participants. The 

external repeats were implemented n1/n2 times, and this ratio was rounded to the nearest 

integer.

F. Machine learning models

The mapping of the data or derived features into outcome classes is a supervised binary 

classification problem. All the models were written in the Python 3 language and the 

programming code is based on Scikit-learn [42]. Three different binary classifiers were 

trained for each experiment category as follows:

1) Support Vector Machine (SVM): An SVM is a supervised model that is designed to 

find the optimal separating hyperplane with the maximum margin within the classes. Linear 

and radial basis function kernels were used.

2) Logistic Regression: A logistic regression classifier uses a logistic function to 

model the probabilities of the outcomes. L2 regularization was used with the logistic 

regression classifier to achieve a robust model, minimize overfitting and reduce any effect of 

codependences without reducing the number of features. The regularization strength was set 

to the default level (1) of the Scikit-Learn logistic regression classifier.

3) Multilayer Perceptron: A multilayer perceptron (MLP) is a type of supervised 

classifier with a feedforward architecture, with one or more hidden layers between input 
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and the output. A one-layer MLP with 100 neurons and L2 regularization was used, and 

these parameters were set at the default values for the Scikit classifier.

A five-fold cross-validation procedure was used for parameter tuning and model assessment 

and the class prevalence was adjusted to be identical in each fold. The model was trained on 

the data from all participants except one held-out fold, and the participants in the remaining 

fold were then used as the test data. This process was repeated to ensure testing on all 

participants. Performance metrics were calculated for each test fold, and the mean and 

standard deviation of each metric were calculated across the five folds. After extracting the 

features, the training phase of the classifier took an average of 0.57 seconds on a 2.3 GHz i5 

intel chipset.

G. Overview of Experiments

Three categories of experiments were performed as follows and all models were tested for 

the full dataset and for the subset of participants whose PTSD outcome at week eight is 

different from baseline PTSD status assessed in the ED (ex: PCL-5ED < 31 and PCL-5week-8 

≥ 31):

Experiment 1 (survey model): Prediction of eight-week outcome from ED survey data. 

The PCL-5ED solicits information on symptoms 30 days prior to the traumatic event. The 

raw scores of these surveys were used as features to the models.

Experiment 2 (research watch model): Prediction of eight-week outcome from the 

data. HRV and actigraphy features described in the previous sections were combined to 

obtain a feature matrix of 50 columns and models were trained to predict or classify the 

single corresponding eight-week outcome:

a. Using all participants and using a 56-day window.

b. Prediction of eight-week outcome using 7, 14, …, 56 days of HRV and 

actigraphy features, using participants who contributed data on all days. When an 

analysis window shorter than 49 days was used, the classifier was “predicting” 

the outcome at day 56 “ahead-of-time”. However, when the analysis window size 

was 56 days for example, it reduced to a “classification” task.

c. Analysis of feature trajectories (daily averages of each feature in the 56-day 

window): Participants who report as non-PTSD (PCL-5ED < 31) in ED were 

isolated. Two subgroups were then created by looking at week eight surveys; 

participants who develop new-onset PTSD and those who remain non-PTSD. 

Then, the significance of each feature for these subgroups was tested using the 

Wilcoxon rank sum test.

Experiment 3 (fusion model): Fusion of research watch and survey models by 

concatenating the feature sets. Experiment 3 was implemented on participants who 

contributed both the research watch data and the ED survey data. Survey model and research 

watch model from previous experiments were also trained on this subset of participants to 
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ensure results are directly comparable and the contribution of fusing modalities could be 

tested accurately.

III. EXPERIMENTAL RESULTS

A. Results of Experiment 1

The cross-validation performance of different types of classification models using ED 

survey-based features is shown in Table III. Logistic regression classifier has achieved the 

highest AUC for all outcome types. Table IV shows all metrics including accuracy, TPR, 

TNR, and PPV for the logistic regression classifier. Models showed high performance for 

all outcome types; 0.67, 0.70, and 0.70 accuracies for PTSD, PTSD-Sleep Anx./Panic, and 

PTSD-Pain Int. outcomes respectively.

The performance was evaluated for the participants for whom PTSD outcome changed from 

admission to week eight (N=270 for PTSD outcome, N=150 for PTSD-Sleep Anx./Panic 

outcome, N=110 for PTSD-Pain Int. outcome) without retraining the model. For these 

subsets of the participants, accuracies of 0.33, 0.32, and 0.34 was achieved for PTSD, 

PTSD-Sleep Anx./Panic, and PTSD-Pain Int. outcomes respectively.

B. Results of Experiment 2

Table V shows the performance of different classifiers when HRV and actigraphy features 

were used. It can be seen that similar to Exp. 1, logistic regression classifier performed 

the best for all outcome types. Models achieved the highest AUC of 0.70 and accuracy of 

0.65 when the outcome is PTSD-Pain Int. However, the performance was lower for other 

outcome types; accuracy was 0.56 for PTSD outcome and 0.58 for PTSD-Sleep Anx./Panic. 

Table VI shows the logistic regression classifier performance in detail for the research watch 

models. The model performance was similar for participants undergoing a change in the 

clinical status. The accuracies were 0.55, 0.59, 0.64 for PTSD, PTSD-Sleep Anx./Panic, 

and PTSD-Pain Int. outcomes respectively for this subset. For each outcome type, Fig. 5 

shows the feature importance determined by the absolute value of the logistic regression 

coefficients, averaged over folds. Fig. 6 illustrates the AUC from each window size when 

participants with data contribution from all 56 days are considered. The best performance 

was achieved when all 56 days were used as the analysis window.

For the HRV and actigraphy features, the feature trajectories were also investigated. 

RMSSD, HF and pnn50 features were significantly different between the groups for the 

highest number of days (N>19) among all features. Fig. 7 illustrates the trajectory of these 

features over the window.

C. Results of Experiment 3

For comparison with the fusion models, experiments were repeated on the participants who 

contributed both research watch and survey data. The AUC was improved for participants 

whose PTSD status has changed, in all outcome types compared to the ED survey only 

models. For PTSD outcome AUC improvement was two percentage points. For PTSD-Sleep 

Panic/Anxiety outcome, improvement was six percentage points, and for PTSD-Pain Int. 
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outcome improvement was 26 percentage points. The AUC of the overall model (including 

all participants) was also improved to 0.79 for PTSD-Pain Int. outcome type as shown in 

Table VII. However, for all outcome types, AUC of survey and fusion models were not 

significantly different as determined by Hanley and McNeil two-tailed test.

IV DISCUSSION

In this work, features and patterns related to circadian rhythmicity derived from data 

recorded on a research watch were used to predict or detect post-trauma outcomes. Patients 

with PTSD have previously reported sleep disturbance symptoms including insomnia 

and nightmares [23]. It has also been shown in previous studies that PTSD has a high 

co-occurrence with chronic pain, which could interfere with patients’ daily lives [4, 5]. 

Moreover, PTSD could also result in decreased interest in activities, as stated by the DSM-5 

criteria [2]. Therefore, we hypothesized that PTSD may lead to changes in the circadian 

rhythm that could be captured by the actigraphy and HRV data.

As a baseline, three clinical surveys administered in the ED were used as features to 

train a logistic regression model to predict eight-week PTSD. By using these ED surveys, 

the models achieved AUCs of 0.73 for PTSD outcome, 0.79 for PTSD-Panic Sleep/Anx. 

outcome, and 0.77 for PTSD-Pain. Int. outcome. These results indicate that previous PTSD 

status and stress experienced immediately following the traumatic event are a significant 

predictor of PTSD in the following months. However, in general, these models simply 

predicted that the PTSD status is unlikely to change.

Then, the use of various types of machine learning models with HRV and actigraphy 

features was investigated. The logistic regression model achieved the highest cross-validated 

accuracy for predicting the PTSD label at week eight post-trauma when the data from the 

enrollment until the end of week eight was considered. The weights of the logistic regression 

model were analyzed to identify the contribution of each feature (Fig 5). NNiqrσ, avgSQIµ, 

LFµ and LFHFµ had the highest relative importance amongst the HRV features. LF power, 

in particular, was lower in the population with eight-week PTSD (a mean of 1178 ms2 vs 

1562 ms2). Since the LF power is dominantly associated with baroreflex activity, it can be 

interpreted as blunted baroreflex activity over this period [37], which is consistent with the 

literature on PTSD [43]. Previous studies have also shown that LF power is significantly 

different in stressful conditions compared to the resting conditions [44, 45]. Therefore, this 

metric could be reflecting the stress the participants are experiencing following the traumatic 

event. From the actigraphy based metrics, the movement during the rest and the active parts 

of the day, IVact, ISrest, ISact and CRSσ, metrics were the most important. IV measures the 

fragmentation of rest/activity rhythm and the transitions between rest and activity and IVact 

shows irregular activity during the daytime. IS is a measure of variability between days 

[41]. ISrest and ISact were informative when the outcome is PTSD-Sleep Anx./Panic. This 

could indicate that anxiety resulting from trauma could lead to decoupling from zeitgebers 

in both rest and activity regions. The feature trajectories over time could help to identify the 

individuals that may benefit from specialized interventions such as biofeedback therapies for 

HRV. Fig. 7 shows a significant difference for the mean values of pnn50, HF, and RMSSD 

between participants who developed PTSD and those who did not.
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It is debatable whether collecting data from surveys or a wearable (such as our research 

watch) represent a lower burden for subjects who develop PTSD. Wearable technologies 

such as smartwatches (and even mobile phones) are now commonplace and provide the 

opportunity to collect data without user intervention, while survey-based assessments 

are active data collection techniques requiring effort and input from the user. However, 

wearables also require frequent device charging at regular intervals, which is unsustainable 

in the long term unless a user already is in the habit of doing so. It may not be an either/or 

proposition though, and these two approaches could complement each other. For example, 

participants who were not able or willing to fill in the survey at admission could benefit 

from passive data collection. In our study N=533 participants did not fill the ED surveys, but 

they wore research watches. For these participants, watch-based models could become the 

prime monitoring method. However, compliance could also be affected by diagnostic status. 

Research watch data compliance was calculated as the hours with data divided by total hours 

in the eight-week window, and it was significantly different in PTSD-Sleep Panic/Anx. 

groups as determined by Wilcoxon rank sum test. Average compliance was 83% for the first 

group (PanicSleep ≥ 3 and PCL-5week-8 ≥ 31) and was 86% for the second group (PSQIA

PanicSleep < 3 and PCL-5week-8 < 31). The compliance to ED surveys (PDI, MCEPS, 

PCL-5ED) was higher for PCL-5week-8 ≥ 31 group (69%) compared to PCL-5week-8 < 31 

group (48%), and this difference was statistically significant as determined by the Fisher 

exact test. The research watch models could be more useful for participants undergoing 

a change in clinical status since the data analysis is windowed and can provide a daily 

or weekly output which may be interpreted as the severity of illness. This could facilitate 

evaluation of response to intervention, for example. Therefore, watch-based models have 

potential for passive monitoring over long study periods.

We note several limitations to our study. First, the outcomes (PTSD status at week eight) 

may reflect the appearance of PTSD at any time over the intervening eight weeks. The high 

variability in the speed of development of PTSD is likely to create high class confusion 

in any machine learning paradigm. Moreover, there is the potential for individuals’ PTSD 

symptoms to wax and wane over the eight-week period, further confusing any algorithm 

trained on such data. Second, due to the use of self-report surveys from week eight for 

constructing outcome classes, our cohort is a subset of the original AURORA Freeze 2 

dataset, albeit a rather large cohort. As more data are collected in the AURORA study in 

the coming years, we will address this limitation by re-evaluating the methods with more 

participants. Lastly, time zone information was not available for our participants. Circadian 

(mis)alignment may have provided additional information for adjusting features. While the 

cosinor-based rest-activity detection might compensate for this lack of information, it cannot 

fully address the issue.

Despite these limitations, the methods for classifying or predicting outcomes (for window 

sizes smaller than 49 days) could be useful in passively monitoring changes in symptom 

severity in large populations and in low-resource settings. Without the prior knowledge 

of which patients to administer treatment, smartwatch-based monitoring could be used 

to identify the subset of patients to prioritize. By using 56 days of data, an AUC of 

0.56 for PTSD, 0.61 for PTSD-Panic Sleep/Anx., and 0.70 for PTSD-Pain. Int was 

achieved. Notably, the model for participants with a combined PTSD and pain outcome 
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combined provides the highest performance. Identifying and treating these particular types 

of individuals is extremely important. Previous studies report that patients with both chronic 

pain and PTSD combined use healthcare services more than the patients with PTSD or 

chronic pain alone, increasing healthcare costs [5]. Moreover, PTSD treatment for these 

patients could be more beneficial than for other groups, since they also report a reduction in 

pain symptoms after treatment [46].

The cosinor method described in this work for determining the rest and activity regions 

could be useful for the studies in which participants cross different time zones, and 

in situations when obtaining sleep diary and time zone information would be highly 

burdensome for the participant. Addressing adherence and wearability of the device is likely 

to boost performance of the approach described here in the complete dataset yet to be 

collected (another 3000 patients). Also, additional features related to sleep may enhance 

the model performance. In particular, it is possible to estimate the sleep periods within the 

detected rest regions by adapting sleep staging algorithms from pulse and activity metrics, 

for the research watch used in this study and this will be implemented in our future work 

[47, 48].

V. CONCLUSION

As far as we are aware, this research represents the first attempt to predict outcomes 

following a traumatic event from a wearable (or more specifically, a watch). We both 

classified and predicted outcomes using non-invasive physiological features derived from a 

research quality watch, using a logistic regression model. We also developed a method to 

automatically detect rest and activity periods of the day using the cosinor analysis.
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Fig. 1. 
AURORA Freeze 2 Dataset overview and number of participants in each outcome group that 

is used in this research. Outcome surveys applied at week eight (PCL-5, PSQIA-PanicSleep, 

and PROM-Pain4a) were used to create the outcome groups. ED surveys included PDI, 

MCEPS and PCL-5 administrated at ED department following trauma. Top row of the 

tables indicates the number of participants that answered the outcome surveys, which is the 

maximum number available for the analysis. The rows below the first row indicate if the 

participants shared other modalities in addition to the outcome surveys.
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Fig. 2. 
Percentage of hours with actigraphy and derived heart rate (HR) data in the eight-week study 

period. If no samples are captured in a given clock hour, that hour is marked as empty.
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Fig. 3: 
Timeline of data collection and clinical surveys. In the bottom plots, actigraphy and RR 

Interval data collected with the research watch is illustrated.
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Fig. 4. 
Detection of rest and activity regions from actigraphy data. Lighter colors indicate higher 

intensity movements. Deviations from the typical pattern are seen on days 40–56 in this 

example participant.
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Fig. 5. 
Feature importance for logistic regression models (window size=56 days). Highest five 

average absolute feature coefficients across folds are illustrated for each outcome.
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Fig. 6. 
AUC of the logistic regression models with different window size selection. Subplot (a) 

shows the AUC for the PTSD outcome, subplot (b) shows PTSD-Panic Sleep/Anx. outcome, 

and subplot (c) shows PTSD-Pain. Int. outcome over the days.
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Fig. 7. 
Trajectories of pnn50, HF, and RMSSD features for participants who develop PTSD and 

who do not, as determined by PCL-5 survey at week eight. Mean of features are shown with 

solid lines and 95% confidence intervals are shown with the shaded regions.
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TABLE I:

Freeze 2 dataset participant demographics. p values calculated using Wilcoxon rank sum test (age, BMI) or 

Fisher exact test (sex, employment) between PCL-5 ≥ 31and PCL-5 < 31 participants. Age and BMI are shown 

as Mean (SD).

Total Week 8
PCL-5 ≥ 31

Week 8
PCL-5 < 31

P
val.

Sex
M 581 156 194

0.57
F 1037 409 471

Age 35 (13) 36 (12) 35 (13) 0.31

BMI 30.4 (8.7) 30.7 (9.2) 30.3 (8.4) 0.53

Emp. Status
Employed 1064 374 545

0.05
Other 554 191 220

SD: Standard deviation
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TABLE III:

AUC comparison of different classifiers using ED surveys as features for eight-week outcome prediction. 

Results are reported as mean ± standard deviation.

Outcome Log. Reg MLP RBF
SVM

Linear
SVM

PTSD 0.73±0.03 0.73±0.03 0.72±0.03 0.73±0.03

PTSD, Sleep Anx./Panic 0.79±0.04 0.79±0.05 0.76±0.07 0.78±0.07

PTSD, Pain Int. 0.77±0.04 0.77±0.04 0.74±0.04 0.76±0.04
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TABLE IV:

Performance of logistic regression model using ED surveys as features for eight-week outcome prediction 

(N=739 for PTSD outcome analysis, N=468 for PTSD-Sleep Anx./Panic outcome analysis, N=326 for PTSD

Pain Int. outcome analysis). Results are reported as mean ± standard deviation.

Outcome Acc. AUC TPR TNR PPV

PTSD 0.67±0.01 0.73±0.03 0.64±0.05 0.70±0.05 0.69±0.06

PTSD, Sleep Anx./Panic 0.70±0.06 0.79±0.04 0.67±0.11 0.74±0.07 0.72±0.07

PTSD, Pain Int. 0.70±0.04 0.77±0.04 0.68±0.03 0.73±0.09 0.72±0.09
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TABLE V:

AUC comparison of different classifiers using HRV and actigraphy features for eight-week outcome 

prediction. Results are reported as mean ± standard deviation.

Outcome Log. Reg MLP RBF
SVM

Linear
SVM

PTSD 0.56±0.05 0.55±0.04 0.54±0.03 0.56±0.05

PTSD, Sleep Anx./Panic 0.61±0.06 0.60±0.06 0.61±0.07 0.59±0.06

PTSD, Pain Int. 0.70±0.02 0.69±0.04 0.69±0.03 0.69±0.02
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TABLE VI:

Performance of logistic regression model using HRV and actigraphy features for eight-week outcome 

prediction. Results are reported as mean ± standard deviation.

Outcome Acc. AUC TPR TNR PPV

PTSD 0.56±0.03 0.56±0.05 0.58±0.06 0.53±0.06 0.55±0.02

PTSD, Sleep Anx./Panic 0.58±0.05 0.61±0.06 0.64±0.07 0.53±0.08 0.58±0.08

PTSD, Pain Int. 0.65±0.04 0.70±0.02 0.69±0.04 0.63±0.08 0.65±0.08
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TABLE VII:

AUC comparison of different model types. Results are reported as mean ± standard deviation.

Model PTSD PTSD-Sleep Anx./Panic PTSD-Pain Int.

Survey 0.74±0.03 0.77±0.07 0.75±0.09

Research watch 0.54±0.04 0.70±0.09 0.68±0.04

Fusion 0.73±0.04 0.75±0.09 0.79±0.04
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